NANOTECHNOLOGY EXPERIMENTS FOR GENERAL CHEMISTRY LABORATORY CLASSES

David A. Katz

Department of Chemistry Pima Community College Tucson, Arizona, U.S.A.

Email: dkatz@pima.edu

Web site: http://www.chymist.com

- Nanotechnology
 - Major area of research and development
 - Only now being included in recent editions of textbooks for general chemistry
 - Almost no inclusion in the student laboratory.
- Lab procedures and kits developed at the Materials Research Science and Engineering Center (MRSEC) at the University of Wisconsin-Madison http://mrsec.wisc.edu/Edetc/index.html
 (Go to video lab manual)

Courses

CHM 121IN, Chemistry and Society CHM 125IN, Consumer Chemistry

Non-major courses

Taught as a hands-on learning courses

Experiments introduced in 2003

CHM 151-152IN, General Chemistry

ENG 110IN, Solid State Chemistry

LED and solar cell experiments included in laboratory

Mood Rings

Dark blue: Happy, romantic

or passionate

Blue: Calm or relaxed

Blue-green: Somewhat

relaxed

Green: Normal or average

Amber: A little nervous or

anxious

Gray: Very nervous or

anxious

Black: Stressed, tense or

feeling harried

Liquid Crystals

Both pressure sensitive and temperature sensitive (thermochromic) mixtures are

prepared

Liquid Crystals

- Organic compounds in a state between liquid and solid
- Viscous, jelly-like materials that resemble liquids in viscosity and crystals in lightscattering and reflection
- Highly anisotropic (having different optical properties in different directions) - usually long and narrow - and revert to an isotropic liquid (same optical properties in all directions) through thermal action (heat) or by the influence of a solvent.

Cholesterol

Cholesteryl Ester Liquid Crystals

Types of Cholesteryl Liquid Crystals

Lyotropic

Molecules consist of a nonpolar hydrocarbon chain with a polar head group.

In a solvent, such as water, the water molecules are sandwiched between the polar heads of adjacent layers while the hydrocarbon tails lie in a nonpolar environment.

These tend to be pressure and temperature sensitive

Types of Cholesteryl Liquid Crystals

Smectic

Molecules arranged in horizontal layers or strata and are standing on end either vertically or at a tilt.

Molecules possess a high degree of long-range order with their long axes approximately parallel, but without the distinct layers of the smectic crystals.

These are temperature sensitive

Cholesteryl Ester Liquid Crystals

Temperature Transition of a Mood Ring (Coming soon)

Dark blue: Happy, romantic

or passionate

Slue: Calm or relaxed

Blue-green: Somewhat

relaxed

Green: Normal or average

Amber: A little nervous or

anxious

Gray: Very nervous or

anxious

Black: Stressed, tense or

feeling harried

normal 82°F (28°C)

colder

Investigation of an LCD watch display

Take watch apart

View with polarizer

Remove electronics and display

Polarizer

Top plate LC layer Bottom plate

Polarizer -Mirror

Display is touch sensitive

Determine transition temperature

Cut and rotate part of top polarizer

Liquid Crystal "Pixel"

Liquid Crystal "Pixel"

(Still working out some "kinks")

Prepare polyvinylalcohol solution

Coat conductive glass

Clean edge

Plastic film spacers

Clamp together

4'-pentyl-4-biphenylcarbonitrile

Add to "pixel"

Prepared glass plate

Add polarizing filter

Attach 9-V battery. Finished "pixel"

Titanium Dioxide Raspberry Solar Cell

Grind nanocrystalline TiO₂ with dilute acetic acid

Coat surface conducting glass

Bake coating on hot plate

Dip into berry juice

Rinse

Coat 2nd piece of glass with carbon

Clamp together

Dope with KI₃ solution

Measure voltage

Aqueous Ferrofluid

 Colloidal suspensions of magnetic nanoparticles.

- Responds to an external magnetic field
- Fe₂O₃ magnetite nanoparticles can be produced by mixing Fe(II) and Fe(III) salts together in a basic solution.
- Surfactants are used to prevent the nanoparticles from approaching one another too closely.
- Ferrofluids exhibit "spikes" when placed in the proximity of a strong magnet.

Aqueous Ferrofluid

Mix FeCl₂ and FeCl₃

React with aqueous NH₃

Decant liquid and transfer solid to a weighing boat

Rinse with water and tetramethylammonium hydroxide

Place a magnet under the ferrofluid.

Store in 70% 2-propanol

LED's

Experiments:

- Observe diode behavior
- Determine relative wavelength of light
- Determine relative energies of different colored LED's
- Measure voltages
- Control light path with an optical fiber
- Apply LED light to a luminescent material

Nitinol

Nitinol

The Thermobile, a nitinol motor

A Nitinol butterfly

Training Nitinol Wire

Obtain a wire bending plate
This is a Beadalon Thing-a-ma-Jig

Fasten Nitinol wire in place with stainless steel screws and washers

Heat with a mini blow torch

Graphene (Coming soon)

Transfer graphite to Scotch tape

Peel layers apart

Transfer to a silicon wafer

View under a microscope (lots of debris)

Sources

Cholesteryl liquid crystals: Sigma-Aldrich Chemical Co.

Nanocrystalline titanium dioxide solar cell kit: ICE – Univ. of Wisconsin (get one kit only)

Aqueous Ferrofluid: Flinn Scientific and Sigma-Aldrich

LED Color Strip Kit: ICE-Univ. of Wisconsin (get one kit only

- additional materials from an electronics store)

Nitinol wire: Images Scientific Instruments

Nitinol Butterfly: Images Scientific Instruments

Beadalon wire bending plate: Craft store or Amazon.com

Mini-torch: Harbor Freight Tools

Web sites:

http://www.chymist.com

Click on Laboratory Experiments on left-hand menu.

Materials Research Science and Engineering Center (MRSEC) at the University of Wisconsin-Madison

http://mrsec.wisc.edu/Edetc/index.html

Go to video lab manual

Note: See The Nano Song

http://www.youtube.com/watch?v=LFoC-uxRqCg