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To solve the electronic frontier (valence or bonding) problems on the 
basis of the many-electronic ground state stands for quantum chemists  

almost as “to determine the weight of the captain of a large ship by 
weighing the ship when he is and when he is not on board”

(Coulson, 1960)
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Dear Scholars (Student, Researcher, Colleague),

I am honored to introduce Quantum Nanochemistry, a handbook com-
prised of the following five volumes:

Volume I: Quantum Theory and Observability
Volume II: Quantum Atoms and Periodicity
Volume III: Quantum Molecules and Reactivity
Volume IV: Quantum Solids and Orderability
Volume V: Quantum Structure–Activity Relationships (Qu-SAR)

This treatise, a compilation of my lecture notes for graduates, post-
graduates and doctoral students in physical and chemical sciences as 
well as my own post-doctoral research, will serve the scientific com-
munity seeking information in basic quantum chemistry environments: 
from the fundamental quantum theories to atoms, molecules, solids 
and cells (chemical–biological/ligand–substrate/ligand–receptor inter-
actions); and will also creatively explain the quantum level concepts 
such as observability, periodicity, reactivity, orderability, and activity 
explicitly.

The book adopts a three-way approach to explain the main principles 
governing the electronic world: 

• firstly, the introductory principles of quantumchemistry are stated; 
• then, they are analyzed as primary concepts employed to under-

stand the microscopic nature of objects;
• finally, they are explained through basic analytical equations con-

trolling the observed or measured electronic object. 

It explains the first principles of quantum chemistry, which includes quan-
tum mechanics, quantum atom and periodicity, quantum molecule and 
reactivity, through two levels: 

PREFACE TO FIVE-VOLUME SET



• fundamental (or universal) character of matter in isolated and 
interacting states; and 

• the primary concepts elaborated for a beginner as well as an 
advanced researcher in quantum chemistry. 

Each volume tells the “story of quantum chemical structures” from differ-
ent viewpoints offering new insight to some current quantum paradoxes. 

• The first volume covers the concepts of nuclear, atomic, molecular 
and solids on the basis of quantum principles—from Planck, Bohr, 
Einstein, Schrödinger, Hartree–Fock, up to Feynman Path Integral 
approaches;

• The second volume details an atom’s quantum structure, its diverse 
analytical predictions through reviews and an in-depth analysis of 
atomic periodicities, atomic radii, ionization potential, electron 
affinity, electronegativity and chemical hardness. Additionally, 
it also discusses the assessment of electrophilicity and chemical 
action as the prime global reactivity indices while judging chemi-
cal reactivity through associated principles;

• The third volume highlights chemical reactivity through molecular 
structure, chemical bonding (introducing bondons as the quantum 
bosonic particles of the chemical field), localization from Hückel 
to Density Functional expositions, especially how chemical prin-
ciples of electronegativity and chemical hardness decide the global 
chemical reactivity and interaction;

• The fourth volume addresses the electronic order problems in the 
solid state viewed as a huge molecule in special quantum states; and 

• The fifth volume reveals the quantum implication to bio-organic 
and bio-inorganic systems, enzyme kinetics and to pharmaco-
phore binding sites of chemical–biological interaction of mol-
ecules through cell membranes in targeting specific bindings 
modeled by celebrated QSARs (Quantitative Structure–Activity 
Relationships) renamed here as Qu–SAR (Quantum Structure–
Activity Relationships). 

Thus, the five-volume set attempts, for the first time ever, to unify the intro-
ductory principles, the primary concepts and the basic analytical equations 
against a background of quantum chemical bonds and interactions (short, 
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medium and long), structures of matter and their properties: periodicity of 
atoms, reactivity of molecules, orderability of solids, and activity of cells 
(through an advanced multi-layered quantum structure–activity unifying 
concepts and algorithms), and observability measured throughout all the 
introduced and computed quantities (Figure 0.0). 

It provides a fresh perspective to the “quantum story” of electronic 
matter, collecting and collating both research and theoretical exposition 
the “gold” knowledge of the quantum chemistry principles. 

The book serves as an excellent reference to undergraduate, graduate 
(Masters and PhDs) and post-doctoral students of physical and chemical 
sciences; for it not only provides basics and essentials of applied quantum 
theory, but also leads to unexplored areas of quantum science for future 
research and development. Yet another novelty of the book set is the intel-
ligent unification of the quantum principles of atoms, molecules, solids 
and cells through the qualitative–quantitative principles underlying the 
observed quantum phenomena. This is achieved through unitary analytical 

FIGURE 0.0 The featured concepts of the “First Principles of Quantum Chemistry” five-
volume handbook as placed in the paradigmatic chemical orthogonal space of atoms and 
molecules.
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exposition of the quantum principles ranging from quanta’s nature (either 
as ondulatory and corpuscular manifestations) to wave function, path inte-
gral and electron density tools.

The modern quantum theories are reviewed mindful of their implications 
to quantum chemistry. Atomic, molecular, solid-state structures along cell/
biological activity are analytically characterized. Major quantum aspects 
of the atomic, molecular, solid and cellular structure, properties/activity 
features, conceptual and quantitative correlations are unitarily reviewed at 
basic and advanced physical-chemistry levels of comprehension. 

Unlike other available textbooks that are written as monographs dis-
playing the chapters as themes of interests, this book narrates the “story 
of quantum chemistry” as an extended review paper, where theoretical 
and instructional concepts are appropriately combined with the relevant 
schemes of quantization of electronic structures, through path integrals, 
Bohmian, or chemical reactivity indices. The writing style is direct, con-
cise and appealing; wherever appropriate physical, chemical and even 
philosophical insights are provided to explain quantum chemistry at large. 

The author uses his rich university teaching experience of 15 years 
in physical chemistry at West University of Timisoara, Romania, along 
with his research expertise in treating chemical bond and bonding through 
conceptual and analytical quantum mechanical methods to explain the 
concepts. He has been a regular contributor to many physical-chemical 
international journals (Phys Rev, J Phys Chem, Theor Acc Chem, Int 
J Quantum Chem, J Comp Chem, J Theor Comp Chem, Int J Mol Sci, 
Molecules, Struct Bond, Struct Chem, J Math Chem, MATCH, etc.).

In a nutshell, the book amalgamates an analysis of the earlier works 
of great professors such as Sommerfeld, Slater, Landau and Feynman 
in a methodological, informative and epistemological way with practical 
and computational applications. The volumes are layered such that each 
can be used either individually or in combination with the other volumes. 
For instance, each volume reviews quantum chemistry from its level: as 
quantum formalisms in Volume I, as atomic structure and properties in 
Volume II, as detailed molecular bonding in Volume III, as crystal/solid 
state (electronic) in Volume IV, and as pharmacophore activity targeting 
specific bindings in Volume V.
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To the best of my knowledge, such a collection does not exist currently 
in curricula and may not appear soon as many authors prefer to publish 
well-specialized monographs in their particular field of expertise. This 
multiple volumes’ work, thus, assists academic and research community 
as a complete basic reference of conceptual and illustrative value. 

I wish to acknowledge, with sincerity, the quantum flaws that myself 
and many researchers and professors make due to stressed delivery of 
papers using computational programs and software to report and interpret 
results based on inter-correlation. I feel, therefore, the need of a new com-
prehensive quantum chemistry reference approach and the present five-
volume set fills the gap:

• Undergraduate students may use this work as an introductory 
and training textbook in the quantum structure of matter, for basic 
course(s) in physics and chemistry at college and university;

• Graduate (Master and Doctoral) students may use this work as 
the recipe book for analytical research on quantum assessments of 
electronic properties of matter in the view of chemical reactivity 
characterization and prediction;

• University professors and tutors may use this work as a reference 
textbook to plan their lectures and seminars in quantum chemistry 
at undergraduate or graduate level;

• Research (Academic and Institutes) media may use this work as 
a reference monograph for their results as it contains many tables 
and original results, published for the first time, on the atomic-
molecular quantum energies, atomic radii and reactivity indices 
(e.g., electronegativity, chemical hardness, ionization and electron 
affinity results). It also has a collection of original, special and gen-
erally recommended literature, integrated results about quantum 
structure and properties.

• Industry media may use this work as a working tool book while 
assessing envisaged theoretical chemical structures or reactions 
(atoms-in-molecule, atoms-in-nanosystems), including molecular 
modeling for pharmaceutical purposes, following the presented 
examples, or simulating the physical–chemical properties before 
live production;
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• General media may use this work as an information book to get 
acquainted with the main and actual quantum paradigms of mat-
ter’s electronic structures and in understanding and predicting the 
chemical combinations (involving electrons, atoms and molecules) 
of Nature, because of its educative presentation.

I hope the academia shares the same enthusiasm for my work as the author 
while writing it and the professionalism and exquisite cooperation of the 
Apple Academic Press in publishing it.

Yours Sincerely,

Mihai V. Putz, 
Assoc. Prof. Dr. Dr.-Habil. Acad. Math. Chem.
West University of Timişoara
& R&D National Institute for Electrochemistry and Condensed Matter 
Timişoara 
(Romania)
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The frontiers of quantum physics and quantum chemistry are constantly 
changing with new discoveries and even bolder theoretical speculations. 
In the recent past, quantum mechanics have reached to such enormous 
heights that even seasoned theoreticians find it difficult to comprehend 
theories published in their own field of expertise. In my opinion under-
standing quantum mechanics is very much like climbing a steep hill and 
then moving on a smooth valley. Once one is able to overcome the bar-
rier, one is then able to see clearly, the beautiful philosophy behind the 
abstract notions.

Quantum mechanics has come a long way from understanding 
atoms, invention of laser, quantum Hall effect, quantum nano-struc-
tures to quantum gases. The starting point of understanding advanced 
quantum mechanics is to first understand the more basic building 
blocks of nature, i.e., atoms and molecules and their properties. To this 
end, one then needs to appreciate atoms and molecules both from the 
perspective of a physicist as well as a chemist. Both these perspectives 
are essential to fully appreciate the interdisciplinary nature of science 
prevalent now days.

As varied as the interests of landmark entrepreneur and scientist 
Alfred Nobel, the present book Quantum Atom and Periodicity by 
Mihai V. Putz, explores the story of periodicity of chemical elements 
by incorporating topics spanning from history to topics as complex as 
Feynman-Kleinert variational theory, density functional theory as well 
as quantum theory of periodicity. The author has very nicely estab-
lished a connection between the classical views and quantum theory 
about periodicity of elements. With its clear descriptions and expla-
nations, readers from both physics as well as chemistry can appreciate 
and comprehend the book.

FOREWORD TO VOLUME II: 
QUANTUM ATOMS AND PERIODICITY
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I recommend the book highly to students of both physics and chem-
istry who wish to understand the quantum theory of periodicity of 
elements.

Aranya B. Bhattacherjee
School of Physical Sciences
Jawaharlal Nehru University
New Delhi, India
November 2015



PREFACE TO VOLUME II:  
QUANTUM ATOMS AND PERIODICITY 
(UNIVERSE IN MACRO, AS IN  
MICRO-SHELLS)

THE SCIENTIFIC PREMISES

Most of the Universe is made up of energy and substance. While energy 
is the ability to do mechanical work, movements and variations, the sub-
stance is characterized by mass and occupies a determined space. It is 
further divided into entities with distinct physical and chemical prop-
erties, the elements and the atoms. The elements contain a single type 
of isotopes’ atoms (e.g., isotopes’ atom of carbon – C), which can take 
different forms (for Carbon: diamond, graphite or fullerenes). Greek 
philosophers Leucippus and Democritus were the first to propose atom-
ism – a theory that places atoms as the indivisible units of matter at the 
Universe’s base. Scientific knowledge expanded later, starting from the 
works of Enrico Fermi (1901–1954), to prove that atom is further made 
up of nucleus (protons and neutrons) with electrons revolving around; 
division of nucleus (by fission in nuclear explosions, for example) gener-
ates enormous energy.1

Each atom has at least one proton, the positively charged particles 
(each with the charge +1e) present at the center of an atom (the nucleus). 
Elements differ from each other by the number of protons, for example 
Hydrogen has one proton, Helium has two protons, and so on. The atomic 
number, based on the number of protons in an atom, is a unique charac-
teristic associated with each element. The atomic nucleus also contains 
neutral particles, neutrons, with electric charge but mass almost equal to 
the protons. Some researchers accept the neutrons as composite particles, 
1Putz, M. V. (2006). The Structure of Quantum Nanosystems (in Romanian), West University of 
Timişoara Publishing House, Timişoara.
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comprising one proton and particles same as electrons, thus accounting for 
the neutral charge and total mass, slightly above that of a proton (1 atomic 
mass unit, 1 AMU) characterizing neutrons.

Mass of protons and neutrons together constitute the atomic mass, also 
called the atomic weight. Atoms of elements with same number of protons 
but differing number neutrons are referred to as isotopes. The isotopes 
have many practical applications; they are used in archaeological dating, 
biochemical processes, determining the human diet from mummified tis-
sues or bones and so on. 

Additionally, some isotopes are radioisotopes – they generate 
radioactivity (electromagnetic waves with specific wavelengths) by 
transforming spontaneously into other elements (or their isotopes). 
Examples of radioactive isotope are Carbon-14 (14C) or deuterium 
(hydrogen-2, 2H), while 12C and 1H are the stable isotopes of carbon 
and hydrogen, respectively. Radioisotopes are easy to identify due to 
the radiations they emit. 

The electron is the smallest stable particle of an atom; about 1800 
electrons equal the mass of a proton. It orbits around the nucleus in an 
atomic-orbital area at a speed nearly equal to the speed of light. Its neg-
ative charge (–1e) and its number equal to the number of protons in 
an atom provide the so-called atomic neutrality. However, many atoms 
exist in ionized atomic states also; when they have more or less electrons 
than the number of protons. For example, the iron atoms (Fe) have 26 
protons in total; however, some Fe atoms have only 23 electrons (they 
are called Fe3+ cations) and others have only 24 electrons (Fe2+ cations). 
There are about 93 stable atoms occurring naturally. New elements with 
atomic numbers higher than 93 can be obtained under laboratory condi-
tions (through nuclear reactions), but only a few of them occur naturally 
in the universe.

Approximately 15 billion years ago, the universe modeled from an infin-
itesimally small point of energy with an infinitely large gravity. The actual 
universe emerged from that “point zero” by an event called the Big Bang 
(Great Explosion). Initially, there were only hydrogen atoms, but with con-
tinuous expansion following the Great Explosion, the universe cooled and 
the hydrogen clouds condensed, by gravity, to become stars. Figure P.1 (left)  
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shows the formation/aggregation of Orion Nebula, a constellation (a group 
of stars), taken by Hubble Space Telescope. The image shows formation of 
new stars by gravitational collapse of the interstellar dust. Electromagnetic 
waves emission due to electronic transitions between various atomic and 
molecular orbitals account for the observed color (from visible spectrum – 
radiation wavelengths corresponding to the red color until the one specific 
to purple color).

Figure P.1 (right) shows the remnant of a star that exploded as a super-
nova: the Crab Nebula, registered by Hubble Space Telescope. This event 
was first reported in Chinese and Amero-Indian annals around 1054. No 
European witness of this explosion was recorded till now. However, the 
so-called neutronic star is at the center of Crab Nebula, consisting of rem-
nants neutrons after the total gravitational collapse; radiation emitted by 
the neutron star excites electrons from the surrounding matter, generating 
the visible effect of cosmic dust lighting. As stars grow due to gravita-
tional attraction of surrounding cosmic dust, they become large enough 
to increase their internal pressure. This enormous pressure causes the 

FIGURE P.1 Left: Orion Nebula Constellation, right: The Crab Nebula neutron star, as 
they were registered by Hubble Space Telescope (California) [Hubble Site (2014). http://
hubblesite.org/newscenter/archive/releases/2005/37/].



fusion of hydrogen atoms. The most important reaction that occurs is the 
conversion of hydrogen to helium, in a non-nuclear elementary notation:  
H → He, as noted in Table P.1. This process continues till the formation 
of iron inside the stars; after which the process can no longer continue 
because the appearance of iron increases the gravitational attraction from 
inside and eventually leads to final collapse of the star as a supernova. Our 
Sun, for example, has not yet reached the age to produce Fe inside. Table 
P.1 summarizes the Sun mass (MS) and temperature (in Kelvin units, [K]) 
required for a typical fusion reactions to occur.

The Solar Nebula System composition (containing elements heavier 
even than Fe) indicates that it is a solar system formed by “recycled mate-
rial” from previous stars that exploded as supernovae.

Figure P.2 shows the relative abundance of the elements in the uni-
verse. It is seen that 99.9% of the elements in the universe are H and He; 
the abundance scale being a quasi-logarithmic one indicates H to be 10 
times more abundant than He. Figure P.2 (right) shows planets’ differenti-
ation in our solar system in relation to abundance of atmosphere, silicates 
(products with Si) and other metals. Planets are made up of rare materi-
als that include elements with affinity for oxygen (litophile) Si, Al, Ti, 
Cr, Mn, Fe3+; alkaline elements; alkaline metals (crystals); rare elements; 
those with affinity for sulfur and oxygen (calcophile): Cu, Co, Ni, Zn, Pb, 
Sb, Mo, Fe2+; and metal alloy of iron (siderophile): Fe, Ni, Pt, Ir, Os, Re, 
Au, Rh.
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TABLE P.1 Nuclear Fusion Reactions Stages and the Elements’ Transformation Inside 
Stars, According to Their Mass (Related to Our Sun MS) and Absolute Temperature Inside 
Stars (in degrees Kelvin, [K]) (*)

Stage Mass Temperature Production of nuclei
1 MS 107 [K] H → He
2 108 [K] He → C,O

3 5×108 [K] C, O → Si

4 >30MS 5×109 [K] Si → Fe

*Mineralogy (2001). Lectures’ Notes of Mineralogy, University of Bristol  
(Curator: Prof. D. M. Sherman).
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FIGURE P.2 Left: the (relative) abundance of elements in Universe; right: the planets 
differentiation in our solar system according to the (relative) abundance of atmosphere, 
silicates and metals; after [Mineralogy (2001). Lectures’ Notes of Mineralogy, University 
of Bristol (Curator: Prof. D. M. Sherman)].

FIGURE P.3 Left: the (relative) abundance of Earth’s Crust elements; right: the Earth 
differentiation in metal core and the oxide/silicate mantle; after [Mineralogy (2001). 
Lectures’ Notes of Mineralogy, University of Bristol (Curator: Prof. D. M. Sherman)].

Earth’s composition presents a high degree of chemical evolution 
compared to stars, especially considering the differentiation of H and He. 
Figure P.3 (left) shows the relative abundance of elements in Earth’s crust: 
O and Si are the most abundant elements. Figure P.3 (right) shows  sidero-
phile elements in the metal core and litophile in the mantle and crust, i.e., 
the elements of K, Na, Al and B. At the crust level, elements were dif-
ferentiating between the oceanic and the continental crust. In any case, 
a classification of silicates at the crust level can be made (Table P.2). It 
is important to understand that the Earth and planet formation involves 



complex combinations of metals and nonmetals in condensed form. Their 
study helps in extraction of materials, which have special properties 
(mechanical, electrical, magnetic, optical, catalytic, etc.) and impacts the 
industrial and daily life. We present in the following paragraphs, along 
with examples, the reasons that make them useful.2

• Mechanical properties make them useful in metal alloys produc-
tion: Ti for aircraft industry; for construction: cement (Ca3SiO5); 
in ceramics industry: BN, SiC; as lubricants: graphite, MoS2; as 
abrasives: diamond, quartz (SiO2).

• Electrical properties allow them to be used as metallic conduc-
tors – Cu, Ag; as semiconductors – Si, GaAs; as superconductors 
– Nb3Sn, YBa2Cu3O7; as electrolytes – Li in pacemaker batteries; 
as piezoelectric – a-quartz in watches.

2Inorganic Chemistry (1999). Four Lectures in the 1st Year Inorganic Chemistry Course, Oxford Uni-
versity (Curator: Dr. S. J. Heyes).
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TABLE P.2 Classification of Silicate Compounds in Earth’s Crust (*)

Tectosilicates (63% of the crust)

Plagio Class (Ca, Na)(Al, Si)AlSi2O8

Orto Class KAlSi3O8

Quartz SiO2

Phyllosilicates, planar silicates (5% of the crust)

Biotite K(Mg, Fe)5(AlSi3)O10(OH, F)2

Muscovite KAl2(AlSi3)O10(OH)2

Clorite (Mg, Fe)5Al(AlSi3)O10(OH)8

Chain silicates (Pyroxene and Amfibole) (16% of the crust)

Orthopyroxene (Mg, Fe)SiO3

Augite Ca(Mg, Fe)Si2O6

Hornblende NaCa2(Mg,FeAl)5[(Al, Si)4O11]2(OH)2

Inosilicate (3% of the crust)

Olivine (Mg, Fe)2SiO4

*Mineralogy (2001). Lectures’ Notes of Mineralogy, University of Bristol  
(Curator: Prof. D. M. Sherman).
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• Magnetic properties allow them to be used in audio and video tech-
nology: CrO2, Fe3O4.

• Optical properties make them useful for producing the required 
pigments in paint: TiO2; for color television: Eu3+ in Y2O3 produces 
red color in TV; for laser effect: Cr3+ in Al2O3 in ruby laser; for 
other physical effects: doubling the light frequency produced by 
the light passing through LiNbO3.

• Catalytic properties find uses in the oil industry, Zeolite ZSM-5 (an 
aluminosilicate) in refining oil by the reaction: methanol→octane. 
Other functionalities: The oxygen as sensor: ZrO2/CaO in solid 
solution, and a lot more other applications.

The last few decades of research has focused on synergistic quantum 
approaches involving structure and properties of natural complex systems 
(polyatomic and biomolecular). A unified approach between physics and 
chemistry is also visible at the quantum level, mostly related to natural 
chemical bonds: ionic, covalent, metallic, hydrogenic and the van der 
Walls (as driven, induction and diffusion) ones. As chemical bonds coexist 
in various degrees and combinations in matter, a unitary quantum treat-
ment, based on the first physical-chemical principles, is needed to produce 
an estimation of the structure–properties correlations across the complex 
natural nano-systems: metals, clusters, fullerenes, liquid crystals, poly-
mers, ceramics, biomaterials, metaloenzymes.

Nanosystems represent a synergistic field of research:

• When the spatiality of the chemical bond is about. When atomic 
systems condense into smaller volume than the isolated compo-
nents, the resulting composite nanosystems display exceptional 
properties of coherences which can be later used in processing, 
storing and communication of quantum information.3

• Alternatively, when dealing with chemical concentration of ele-
ments, it is already proved that the range of nano-Molls better 

3Brinkmann, G., Fowler, P. W., Justus, C. (2003). A catalog of isomerization transformations of fuller-
ene polyhedra. J. Chem. Inf. Comput. Sci. 43, 917–927; Liu, J., Shao, M., Chen, X., Yu, W., Liu, X., 
Qian, Y. (2003). Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. J. 
Am. Chem. Soc. 125, 8088–8089; Kobayashi, S.-I., Mori, S., Iida, S., Ando, H., Takenobu, T., Taguchi, 
Y., Fujiwara, A., Taninaka, A., Shinohara, H., Iwasa, Y. (2003). Conductivity and field effect transistor 
of La2@C80 metallofullerene. J. Am. Chem. Soc. 125, 8116–8117



reflects the complex bio-organic and -inorganic combinations, 
especially considering the doze zones responses for an essential 
element, its role in selection or inhibition of a certain biological 
function in organisms, effect in growth and reproduction of cells 
and living organisms.4

Thus, a unitary approach linking the quantum mechanical formal-
isms at the chemical bonding level has been extensively researched.5 
It was recently established that for an adequate treatment in quantum 
space of the polyatomic combinations, the electronic density r(r) and 
not the historical wave function y(r1,...,rN) stays as the main variable for 
a system with N electrons. It is so because quite contrary to the wave 
function, the electronic density is an experimentally detectable quan-
tity defined in the real three-dimensional space, and not within a 3N 
Hilbert abstract space. It is also directly related with the total number 
of electrons in the concerned system through the functional relation: 

. Therefore, the electronic density receives the central role 
within the newest quantum paradigm of matter, the Density Functional 
Theory (Walter Kohn as its father, the Nobel laureate in Chemistry for 
this theory in 1998).

The new quantum view of matter on the nature of chemical bond 
offered both qualitatively and quantitatively schemes of structure analy-
sis together with the chemical–physical transformations, accurately con-
firmed through computational and experimental expertise.6 Consequently, 
many new chapters of the structural physical chemistry have appeared 
with atoms in molecules, reactivity indices, and electronic localization 
approaches. However, all of them are rooted in the atomic properties 
caused by electronic structure, especially at valence level for the quantum 
chemical realm. The present volume deals with such topics for the benefit 
of students and researches in academia and nanotechnology industry. The 
author is open and grateful to constructive observations and suggestions 
from the readers. 
4Sato, K., Hosokawa, K., Maeda, M. (2003). Rapid aggregation of gold nanoparticles induced by 
non cross-linking DNA hybridization. J. Am. Chem. Soc. 125, 8102–8103.
5Bader, R. F. W. (2003). Quantum mechanics, or orbitals? Int. J. Quantum Chem. 94, 173–177.
6Leopoldini, M., Marino, T., Russo, N., Toscano, M. (2004). Density functional computations of the 
energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. 
Theor. Chem. Acc. 111, 210–216.
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VOLUME LAYOUT 

The present volume is the second in the five-volume set on Quantum 
Nanochemistry listed as:

Volume I: Quantum Theory and Observability
Volume II: Quantum Atoms and Periodicity
Volume III: Quantum Molecules and Reactivity
Volume IV: Quantum Solids and Orderability
Volume V: Quantum Structure–Activity Relationships (Qu-SAR)

This book consists of the following chapters: 
Chapter 1 (Historical Highlights on the Periodicity of the Chemical 

Elements): This chapter introduces the principal objects of Chemistry, the 
chemical atoms and their elements against the background of the orig-
inal thoughts of the creators of modern chemistry ranging from Dalton 
to Berzelius to Mendeleev, appropriately selected, tacitly adnotated and 
ordered, while preserving their “aetheral” philosophy of science; the route 
of modern chemistry starting from alchemical philosophy to the natural, 
physical-chemistry approach is well explained. 

Chapter 2 (Quantum Assessment for Atomic Stability): This chap-
ter details the alternative quantum mechanical description of total energy 
explained through path integrals of Feynman–Kleinert formalism, the Bohr 
quantification of hydrogen atom, solution to the stability issue by existing 
quantum fluctuation, modeling by periodic paths and Matsubara frequen-
cies, and treating both ground and excited states from quantum statistical 
perspective.

Chapter 3 (Periodicity by Quantum Propagators in Physical Atom): 
the semiclassical path integral approach provides new definitions, atomic 
Scales of electronegativity and chemical hardness. The considered quan-
tum probability amplitude up to the fourth-order expansion provides 
intrinsic electronegativity and chemical hardness analytical expressions 
in terms of principal quantum number of the concerned valence shell and 
of the effective atomic charge including screening effects. The present 
electronegativity scale strikes on different order of magnitudes down the 
groups of Periodic Table still satisfying the main required acceptability 
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criteria respecting the finite difference based scale. The actual chemi-
cal hardness scale improves the trend across periods of Periodic System 
avoiding the usual irregularities within the old-fashioned energetic pic-
ture. The current quest introduces electronegativity of an element as the 
power with which the frontier electrons are attracted to the center of the 
atom being a stability measure of the atomic system as a whole. However, 
both electronegativity and chemical hardness are analyzed for their quan-
tum nature in Fock spaces of electronic occupancies, while maintaining 
their dichotomy in observability.

Chapter 4 (Periodicity by Peripheral Electrons and Density in 
Chemical Atom): This chapter aims to affirm specific physical-chemi-
cal quantities of electronegativity and hardness as the major electronic 
indicators of structure and reactivity. Their systematic definitions are 
presented and discussed for valence atomic region, Bohmian quantum 
mechanics and the associated density functionals, along their related 
reactivity index as electrophilicity, within conceptual density functional 
theory in general and for softness bilocal to global quantum observability 
in particular. It may serve for further analytical studies of periodicity for 
atomic properties (atomic radii, diamagnetic susceptibility, or polariza-
bility), as well as for future understanding and chemical bonding, reac-
tivity, aromaticity, the biological activity modeling of atoms in molecules 
and in nanostructures.

Chapter 5 (Quantum Algebraic and Stochastic Dynamics for Atomic 
Systems): This chapter reviews and advances the two related quantum 
ways for quantum description of valence/interacting/exchanged elec-
trons among atoms at their turn involved in binding or molecular systems 
(i) by abstract formalization within quantum algebra of open systems; 
(ii) by analytical formulation within stochastic/dissipative systems. This 
way one models the electronic distribution, exchange and localization in 
chemical (inherently open) system, dealing therefore with that chemistry 
is at its ultimate description: the science of moving electrons from one 
state to another (either by intra- or inter-atomic framework).

Accordingly, special features of the present volume are that it:

• Presents historical contributions of researchers, appropriately anno-
tated and adapted for instructive and research purpose;
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• Continues the quantum mechanical path integral modeling with the 
specialized Feynman–Kleinert variational formalism leading to a 
comprehensive understanding of atomic stability;

• Introduces the quantum statistical version of path integral approach 
of quantum mechanics, while employing the developed quantum 
propagators/amplitudes in the second- and fourth-order semiclas-
sical expansion, with innovative applications on electronegativity 
and chemical hardness scales of Periodic Table;

• Characterizes electronegativity and chemical hardness by both 
quantum observability perspective as well as by Bohmian sub-
quantum approach, under the most disputed and discussed para-
bolic energetic shape of valence electrons occupancy;

• Reviews the main pictures for electronegativity, from Pauling and 
Mulliken to the author’s analytical density functionals within the 
softness density functional theory with proper illustration of atomic 
periodicity;

• Formulates, computes, and discusses the atomic periodic scale for 
electronegativity and chemical hardness related scales of atomic 
radii, diamagnetic susceptibility, and polarizability (with new for-
mulation for the last quantity based on quantum Bethe rules)

• Formalizes the atomic structure and reactivity, i.e., the chemical 
atom, by the algebra of quantum states, eventually continued with 
Thomas-Fermi realization as the density functional theory precur-
sor, along the modern approach of the electronic localization prob-
lem in terms of electronic density combinations;

• Presents the Fokker–Planck quantum description of open systems, 
by considering the drift and diffusion contributions in quantum 
evolution, as based on a non-equilibrium Lagrangian, lading with 
generating of the so called Markovian families of electronic local-
ization functions, accommodating the Thom’s catastrophe theory in 
an innovative manner, thus directly describing the atomic valence 
distribution as well as the molecular formation.
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ABSTRACT

This chapter is dedicated introducing the main objects of chemistry, 
namely the chemical atoms and their elements, mostly by reloading of 
the original thoughts of the creators of modern chemistry, from Dalton, 
to Berzelius, to Mendeleev, appropriately cited and ordered, for having a 
glimpse of the flavor in passing from alchemical philosophy to the natural, 
physical-chemistry approach in the forthcoming sections of this volume.

1.1 INTRODUCTION

The concept of chemical element has made a long and sinuous journey in 
history, while the knowledge of the structure of matter was developing. In 
ancient and alchemical period, by elements were understood more like “per-
sonifications” of some property classes, rather than specific forms of sub-
stance. In this manner it was defined a small number of essential elements, 
in general between one and five, which would be the basis of all material 
forms. As a single item was considered, in turn, the water (Thales of Miletus, 
624–546 BC), the air (Anaximenes, 585–525 BC), and the fire (Heraclitus 
of Ephesus, 535–475 BC). All the substances were made—to the ancient 
Egyptians and Arab alchemists—from sulfur and mercury, while Paracelsus 
(1493–1541) proposed three elements: the sulfur, the mercury and the salt. 
Of course, these names were not related to the substances that we know 
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today, they rather designated certain principles and mixed properties. For 
instance, the sulfur was related to fire, and the mercury to liquid property 
of bodies. Nevertheless, some Indian philosophers also believed in these 
three elements: the earth, the water and the air. Instead, the four elements of 
Empedocles (490–430 BC) as indestructible and immutable manifestations 
of Nature were the fire, the water, the air and the earth, all subjected to the 
two antagonist forces: the love and the hate; he also gave the “composition” 
of certain materials, e.g., the bones were made from ½ fire, ¼ earth, ¼ water, 
flesh and blood in equal quantities. Aristotle (384–322 BC) also added to 
the four elements of Empedocles, a fifth one, the “quintessence,” a kind of 
ether: the first four items were ideated by him as being formed by combining 
two properties of four primary qualities: hot, cold, wet and dry; these items 
can transform themselves one to another. Instead, in other part of the world, 
according to some Chinese philosophers, the five essential elements would 
be: the water, the fire, the metal, the earth and wood (Horovitz et al., 2000).

The first definition of the chemical element, in the modern sense, is due 
to R. Boyle (1627–1629); in his book “Skeptical Chemist,” he defined the 
chemical element as a substance which cannot be decomposed into other 
substances. So, the elements (simple bodies) are not composed of other 
substances, but they themselves are the products in which are decomposed, 
ultimately, all other substances. Boyle did not shown specifically what these 
items were about, for example, he could not decide if metals or their oxides 
had a character of an element. On the other hand, the negation, which stay on 
the basis of his statement, make it uncertain as a practical definition, because 
even not known the decomposition methods for a substance at a given time 
(historical epoch), this not necessarily means that such a decomposition is 
not possible in an arguable future. In any case, the use of the term element, in 
the sense of elemental substance, i.e., simple substance, was maintained until 
now, with the note that only its significance was made clear as time passed by. 
An important step was the transition from the meaning of the element notion 
as “principle,” encompassing a collection of properties, to some specific to 
substance type. Noteworthy, Lavoisier, in his famous “Elementary Treatise 
of Chemistry (1789) included in the simple substances category approximate 
40 substances, of which 25 were really elements (Horovitz et al., 2000).

In the following decades, the number of known elements grew fast, 
new and new names had appear, some of them disappearing very soon, 
as being prematurely assigned to “ghost” elements. Certain properties, 
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experimentally observed, were attributed to some inexistent elements. 
Along with defining the elements as simple substances, it became predom-
inant the idea of the impossibility for elements to transform themselves 
one to each other. But the faith in a “primordial matter,” common to all 
elements, continued to be attractive to many researchers. In parallel with 
defining the element notion and with increasing the number of known ele-
ments, the atomistic theory was developed turning eventually into atomic 
structure of chemical matter (Horovitz et al., 2000).

Stacking to the atomistic theory of nature, the Greek philosopher 
Leucippus (in the first half of fifth century BC) claimed that atoms, indi-
visible because of their smallness, are in infinite number, are moving in 
vacuum, are immutable, but may be organized into different aggregates. 
Contemporarily, Democritus (about 460 BC), considered the atoms as 
being without qualities and indivisible because of their high hardness. 
Atoms would not be only constituents of substances, but also of light, so 
giving the reasoning/thoughts and to the soul a material substrate. Plato 
(427–247 BC) accepted the idea that the earth, water, air, and fire, are 
made by particles, but do not admitted the existence of the vacuum: the 
atoms are eternal, have different shapes, weights, properties, and bond 
with each other, through “hooks,” giving incomplete structures for solids. 
It was only with the Dalton’s ideas (1808) the atomic model of chemists 
replaced that one proposed by the philosophers: it assumes (and remains 
as such also nowadays) that each element corresponds to a certain type 
of atoms, having well definite mass, certain fixed (or at least discernable) 
dimensions and presenting chemical properties characteristic of that spe-
cific element (Horovitz et al., 2000).

After the discovering of the electrolysis laws by Faraday (1834) the 
concept of ion was introduced from where the idea of electrically charged 
particles was born, which will stay at the basis of atomic structure. 
Apparently the physicist Weber was the first who referred to “positive 
and negative electric atoms,” with a negligible mass, in addition to regu-
lar neutral atoms, with “ponderable atoms.” The discovery of electrically 
charged particles, precisely the electron, was primarily the result of studies 
on electrical discharges in gases, especially highlighting the cathodic rays. 
Remarkably, the existence of the electron (the mediator of negative charge) 
also involved the presence of certain positive charge constituents in atoms 
so anticipating the nuclei (with protons) existence (Horovitz et al., 2000).
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Nevertheless, the discovery of radioactive processes gave the coup de 
grace to the conception of the atomic indivisibility. After the discovery of 
radioactivity, many products of radioactive decay were considered as new 
elements. Gradually, the concept of isotope was born, which means the 
possibility those atoms with different masses to belong to the same item/
element. Sometimes the term allotropes it is used also for different forms 
of an element, consisting of identical units, but differently arranged on a 
lattice: for example, the rhombic sulfur and the monocyclic one, which 
have different networks, yet both consisting of S8 molecules. After the 
modern compiling the periodic table of chemical elements, the number 
indicating the position of an element in this system has become a new 
feature, more and more considered, to which, however, only the quantum 
mechanics succeeded to give a physical rationale (Horovitz et al., 2000).

However, the conceptual “battle” between the main characteristic of atoms 
of an element as atomic weight and atomic number lead with the Periodic 
System as one of the few universal symbols of nature instantly recognized 
worldwide, yet whose chemcial and physical roots are here to be restoried, 
with the hope of fresh impetus envisaging new atomic structural revelations.

1.2 DALTON’S LEGACY FOR MODERN CHEMISTRY

1.2.1 DALTON’S NEW PHILOSOPHIC SYSTEM FOR CHEMISTRY 
(1805–1827)

Dalton’s cornerstone atomic theory of nature was laid on the next natural 
philosophy (Dalton, 1805, 1808, 1810, 1827):

There are three kinds of bodies, or three states, which have particular 
required the attention of philosophical chemists, especially those marked 
by the terms as elastic fluids, liquids or solid; as an example, a body in 
water behavior, which in some circumstances, it is capable of assuming 
all three states. In steam we recognize the perfectly elastic fluid, in water 
the perfect liquid, while in ice a complete solid. These observations tacitly 
led to the conclusions that seem universal adopted: all relevant bodies, 
liquids or solids, are constituted of a large number of small particles or 
matter atoms, together bound by an attraction force, which is more or 
less strong, depending the circumstances, and which try to prevent their 
separation (in such case called the cohesion attraction). But once they 
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collect themselves from a dissipated state, the chemical force it is called 
the aggregation attraction or simply, the affinity. Whatever name it may go 
by, it has the same power. The Berthollet’s chemical affinity law states: the 
chemical affinity is proportional with the mass, and in all chemical unions 
there are undetectable gradations in the main constituent proportions.

From what there is known, there is no reason to apprehend the diversity in 
these particulars: if the chemical force does not exist in water, it has to be in 
equally measure in the elements which constitute the water, namely hydrogen 
and oxygen. If some of the water particles are heavier than others, there must 
be supposed that it affects the specific mass gravity, which is an unknown cir-
cumstance. Similar observations were made on other substance. Therefore, 
one can conclude that the ultimate particle of all homogeneous bodies is 
perfectly similar in weight, figure etc. In other words, every particle of water 
is the same as other particles of water. Each particle of hydrogen is the same 
as other particle of hydrogen. Except the attraction force, which in one char-
acter or another, universally belongs to the ponderable bodies, there was 
found another force (also universal) which act upon the matter, and comes as 
a following of the rendered consequently, namely, a repulsion force. This kind 
of constant fluid atmosphere surrounds the atoms of all bodies and prevents 
them to be drawn into a contact. The constitution of bulk can be reduced by 
abstraction of some of its own heat, but from what has been said in the last 
section, it seems that the enlargement or the reduction of a bulk depends 
perhaps more on the rearrangement than on the ultimate particle size, for 
example, the solid corps, like ice, containing a large part (maybe 4/5) of the 
heat that was found in the elastic state, as the steam one.

When any corps exists in elastic state, its last particles are separated 
from each other on a much grater distance than in any other state. Each 
particle occupies the center of a large sphere, and worthily resists by sup-
porting the others, which by their gravity, or otherwise, are arranged in 
order to defy the possible limit, to a respectable distance. When is attempt-
ing to find the particles number in atmosphere, it is as attempting to find 
the number of stars from universe. But if the subject is limited, by taking a 
volume of any given gas, leaving the minute division, the number of parti-
cles has to be finite, similar with the fact that in a given space of Universe, 
the number of stars and planets cannot be infinite.

The chemical analysis and synthesis go no farther than the particles 
separation of one from another and by the involved assemble. There is 
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no creation or destruction of matter in the action radius of the chemi-
cal agent. We can try to introduce a new planet in the solar system, or to 
annihilate an already existing one, just like a particle of hydrogen can be 
created or destroyed. All the changes are produced consistently in par-
ticles separation that were in a cohesion or combination state, and also 
associate with those which were at certain distance.

In the all chemical investigations a significant object has been con-
sidered that one of ascertain the relative weights of the simples which 
form a compound. But, unfortunately, everything has been stopped here. 
From the relative mass weights the relative weights of the last particles 
or the bodies’ atoms can be deduced and from here the number and the 
weight in various compounds, in order to assist and guide further investi-
gations, and also correct the results. The importance and the advantage of 
establishing the relative weights of the ultimate particles had been showed 
for simple and compound bodies, with emphasis on the number of simple 
elementary particles which constitute a compound and the number of less 
particles which enter into another compound by particle aggregation.

If there were two bodies, A and B, which are willing to combine eacho-
ther, the following scheme represent the order in which the combination 
will occur, starting with the simplest one, namely (see Figure 1.1):

• 1 atom of A + 1 atom of B = 1 atom of C, binary.
• 1 atom of A + 2 atoms of B = 1 atom of D, ternary.
• 2 atoms of A + 1 atom of B = 1 atom of E, ternary.
• 1 atom of A + 3 atoms of B = 1 atom of F, quaternary.
• 3 atoms of A + 1 atom of B = 1 atom of G, quaternary.

The following general rules were proposed, which may be adopted in 
all investigations which respect the chemical synthesis:

• When only one combination of two bodies can be obtained, it must be 
presumed to be a binary one, unless by some other cause it appears 
to be the contrary.

• When two combinations are observed, there must be assumed that it 
should be binary and ternary;

• When three combinations are observed, there must be assumed that 
one should be binary and the other two tertiary;

• When four combinations are observed, we can expect at one binary, 
two tertiary and one quaternary;
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FIGURE 1.1 Combinations of (atomic) elements (Dalton, 1827).
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• A binary compound is always heavier than the mixture of its two 
ingredients;

• A ternary compound is heavier than a simple or binary mixture, 
which should be part of its constitution;

• The rules above, apply equally when the two bodies, such as C and 
D, D and E, are combined.

In order to apply these rules to the chemical phenomena which already 
exist, we deduce the following conclusions (see Table 1.1):

• The water is a binary compound of hydrogen and oxygen, and the 
relative weights of the two elementary atoms are in ratio 1:7;

TABLE 1.1 Dalton’s Relative Atomic Weights (Dalton, 1827)

No. Symbol Weight

1. Hydrogen 1

2. Azoth 5

3. Carbon 5

4. Oxygen 7

5. Phosphorus 9

6. Sulfur 13

7. Magnesia 20

8. Calcium oxide 23

9. Sodium carbonate 28

10. Potassium 42

11. Strontium oxide 46

12. Barium oxide 68

13. Iron 38

14. Zinc 56

15. Copper 56

16. Lead 95

17. Silver 100

18. Platinum 100

19. Gold 140

20. Mercury 167
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• The ammonia is a binary compound of hydrogen and azoth, and the 
relative weights of the two atoms are 1:5;

• The nitrous gas is a binary compound of azoth and oxygen; the nitric 
acid is a binary or tertiary compound, and contain one atom of azoth 
and two of oxygen, together having 19 weight units; the nitrous oxide 
is a compound similar to the nitric acid, and contain one atom of 
oxygen and two of azoth, weighing 17 units;

• The carbonic oxide is a binary compound, consisting of one atom 
of charcoal and one of oxygen, together weighing 12 units; the car-
bonic acid is a tertiary compound, with two atoms of oxygen and two 
of charcoal, weighing 19 units;

In all these cases the weights are expressed in atoms of hydrogen, 
which represent the unit (Dalton, 1808, 1810, 1827).

1.2.2 DALTON’S CONCEPTS ON ELEMENTARY MOLECULES, BY 
AVOGADRO (1811)

The Dalton’s atomic theory was immediately faced with molecular sam-
ples as stated by Avogadro (1811):

Gay-Lussac has shown that gases always unite in a very simple propor-
tion by volume, and when the result of the union is a gas, its volume is finding 
in a simple relation with the compounds. But the quantitative proportion of 
substances in mixture seems to depend only by the relative number of mole-
cules which are combining and by the number of composed molecules which 
result. One should admit that there is a very simple relation between the vol-
ume of gaseous substance and the number of simple or compound molecules 
which form them. The first hypothesis which presents this connection (appar-
ently the only one permitted) is represented by the assumption that the num-
ber of integral molecules in any gas is always the same for equal volumes, 
or always proportional with the volumes. Indeed, if one assumes that the 
number of molecules contained in a given volume are different for different 
gases, it would be possible to conceive that the law which regulates the mol-
ecules distance could give, in all cases, simple relations as those in which the 
facts are analyzed in order to know the volume and the number of molecules.

On the other hand, there is more likely that the molecules of gases 
being at such a distance, their mutual attraction cannot be exercised, their 
attraction varying for caloric measure could be limited to the atmosphere 
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condensation formed by this fluid having a bigger extension in a given 
case than in other and, in consequence, without the distance between the 
molecules to vary; or, in other words, without the number of molecules 
contained in a given volume to be different.

Dalton, proposed a direct hypothesis (opposed to this one): the caloric 
quantity is always the same for the molecules of all bodies, whatever the 
aggregation state is, and the more or less is the attraction for caloric sam-
ple it only leads to a greater or a smaller condensation production of this 
quantity around the molecules, thus varying the distance between the mol-
ecules themselves. There was no evidence helping to decide in favor of 
one of these theories, therefore, one has been inclined towards a neutral 
hypothesis, according which the distances between molecules and caloric 
quantities vary according to unknown laws, which is not the case of the pre-
sented hypothesis, i.e., based on the simplicity of the relationship between 
the gases volumes in combination, which otherwise seem inexplicable.

Starting from this assumption, there is obvious that such laws have 
the mean for easily determining the relative weights of the substances 
obtained in gaseous state and the relative number of these molecules in 
compounds. The molecular masses ratio is the same with the densities of 
different gases (on equal temperature and pressure) and the relative num-
ber of molecules in a compound is given by the ratio of the gases volumes 
that form it. For example, since the numbers 1.10359 and 0.07321 express 
the densities of two hydrogen and oxygen gases (compared with the air 
atmosphere as unit), the ratio of these two numbers therefore represent 
the ratio between masses, at equal volumes of these two gases; it will 
also represent (in the given hypothesis) the ratio of the masses of their 
molecules. So, the oxygen molecule mass will be 15 times higher than the 
hydrogen molecule, or more precisely, 15.074 to 1. Similarly, the mass of 
nitrogen molecule will be respecting the hydrogen one as 0.96913 is to 
0.07321, so giving 13 or more specifically 13.238 to 1 proportion. On the 
other hand, as soon as the ratio of hydrogen and oxygen volumes in the 
water formation was known to be 2 to 1, the water is seen as the result 
of the union of each molecule of oxygen with two molecules of hydrogen. 
Similarly, according to the proportion of volumes, fixed by Gay-Lussac for 
the elements of ammonia, nitrogen oxide and nitrogen gas, the ammonia 
results from the union of one molecule of nitrogen and three molecules of 
hydrogen, the nitrogen gas lays on the combination of a nitrogen molecule 
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with one of oxygen, and the nitric form is based on one molecule of nitro-
gen and two of oxygen.

There is a consideration which, at a first sight, seems in contradiction 
with the present hypothesis, referring to the composition of substances. It 
seemed that a molecule composed from two or more elementary molecules 
should have its mass equal with the sum of masses of these molecules. In 
particular, if entering a composition, a molecule of a substance is viewed by 
the union of two or more molecules of other substances, while the molecules 
number of the compound should remain the same as for the adduct sub-
stances. According with the present hypothesis, when a gas is combined with 
two or more times the volume of another gas, the resulted compound (if it is 
a gas) must had a volume equal to the first gas. For example, the volume of 
water in gaseous state was, according to Gay-Lussac, carries two times the 
volume of oxygen component (or what was entering at the same time) and 
one of the hydrogen component, instead of being equal to that of the oxygen 
only. It was assumed that the molecules constituents of a simple gas are 
not formed by solitary elements of a molecule, but these constituents were 
by a certain numbers of molecules of this type, united by attraction to form 
a sigle entity. And then, when the molecules of other substance are further 
added to the first one, in order to form a compound molecule, the integral 
molecule which should result, divided itself in two or more parts, made up 
of half, quarter, etc., the number of elementary molecules that formed the 
constituent molecule of the first, combined with half, the number of constitu-
ent molecules of the second substance which entered in combination with 
a constituent of the molecule belonging to the first substances, so that the 
entire number of the compound molecules becomes double etc.

Concerning the most known compound gases, there were found exam-
ples of duplication to the relative volume to the volume of one of the con-
stituents that are combined with one or more volumes in the order. It was 
observed this phenomenon for water. Similarly, there is known that the vol-
ume of ammonia gas is twice of the nitrogen one which entire to it. Gay-
Lussac also showed that the volume of nitrous oxide is equal with that of 
the nitrogen which forms it, and consequently, it is twice that of oxygen. 
Therefore, nitrous gas (containing equal volumes of nitrogen and oxygen) 
had a volume equal to the sum of the two gaseous constituents. In all these 
cases one had to imagine a split of molecules into two, being possible, in 
other situations, into four, eight, etc. The possibility to divide the compound 
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molecules can be a priori considered; otherwise, the integral molecules 
of bodies composed by few substances with a large number of molecules 
should have an excessive weight, in comparison with the substance of sim-
ple molecules. It is therefore conceivable that the Nature has some means 
of bringing them to the state of the latter and these facts have proved the 
existence of such means. Then there is also a consideration that made us 
to admit, in some cases, the molecular division/combination hypothesis in 
question: the way in which one conceive of the reality of the combination 
between two gaseous substances united in equal volume without conden-
sation, such as the formation of nitrous gas took place. Assuming that the 
molecules remain at such a distance in which the mutual attraction of each 
gas could not be expressed, one cannot imagine that a new attraction could 
occur between molecules of a gas with those of other (Avogadro, 1811).

1.2.3 MORE ON DALTON’S ELEMENTARY MOLECULES, BY 
AVOGADRO (1811)

Avogadro (1811) further developed the (atomic) proportion theory into 
molecules (so anticipating a kind of atoms-in-molecules’ theory) by the 
following considerations.

Dalton had supposed that the water is formed by the union of hydrogen 
and oxygen, molecule to molecule. From this and from the mass ratio of 
the two components resulted in the oxygen one concluded that the mol-
ecule mass will be the same as the hydrogen as 71/2 to 1 (or, after the evalu-
ation of Dalton, as 6 to 1).

The present approach, in accordance with the molecular (weight) hypoth-
esis gives, as it was said in previous section, twice bigger result so than as 15 
to 1. For the water molecule, its mass seems to be express by 15 + 2 = 17 mass 
units (taking hydrogen as unit), if it will not be a division of molecule in two; 
but, taking into account such division reduces the mass to half, 81/2 (or more 
precisely 8.537), as one may find itself by dividing the active vapors densities 
0.625 (Gay-Lussac) with the hydrogen density 0.0732; yet this mass number 
differs from 7 (the one given by Dalton) by the difference between values for 
water composition, so that, with respecting the results made by Dalton, it was 
correctly approximate the two compensatory errors in combination, the error 
in the oxygen molecular mass and by the molecular division omission.
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Dalton assumed that in the nitrogen gas the combination of the nitro-
gen with the oxygen is not varying from molecule to molecule. Therefore, 
Dalton found the same molecular mass for nitrogen, always considering 
that the hydrogen is the unit; he did not employed another value for oxygen 
and took the same value for the quantities of elements in gas after weight. 
But, assuming that the oxygen molecule is smaller than half of what was 
found, he was forced to make the nitrogen equal with less than half of the 
assigned value, i.e., 5 instead of 13 units. Regarding the actual molecule, 
he neglected the molecular division, and made it as 6 + 5 = 11, roughly as 
(15 + 13)/2 = 14, or, precisely like (15.074+13.238)/2=14.156, as he divided 
1.03636, the nitrous gas density after Gay-Lussac, with 0.07321. Dalton 
also fixed in the same manner the relative number of molecules in nitrous 
oxide and in nitric acid; in the first case as well, the same circumstances 
were considered as rectifying the result for the molecule magnitude. He 
made 6+2×5=16 which should have been (15.074+2×13.238)/2=20.775, 
a number which is obtained by dividing 1.52092 (Gay-Lussac value for 
nitrous oxide density) on the hydrogen density too.

In the ammonia case, Dalton supposition on the relative number of 
molecules in mixture was totally wrong. He assumed that the nitrogen and 
the hydrogen were united molecule to molecule, whereas it was observed 
that a nitrogen molecule unite three hydrogen molecules instead. Molecule 
division (which do not enter in Dalton calculations) partially correlate, in 
this case, the error which could result from (his) other suppositions.

All the discussed compounds were produced by the union of one mole-
cule with one or more molecule from other. However, in the nitrous acid they 
had another compound from two substances already discussed, in which 
the ratio of terms between the molecules number differ from unity. From the 
Gay-Lussac experiments there seem that this acid is composed by a part of 
the oxygen volume and three parts of nitrogen gas, which is reduced to the 
same as three parts nitrogen and five parts oxygen; so, this molecule should 
be consisting from three nitrogen molecules and five oxygen molecules, 
leading to the possibility of eliminating the division. But this way of combin-
ing could make reference only on the simple forms by considering the result 
of the union of one oxygen molecule with three nitrogen gas, resulting in 
three molecules, each of them consisting in a half of an oxygen molecule and 
a half of a nitrogen molecule, which actually included the division of some 
oxygen molecules which enter in the nitrous acid composition. Assuming 
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that there should not be a division, the mass of this molecule should have 
been 57.542 (with hydrogen as a unit) and the nitrous acid density would 
be 4.21267 (with air density as unit). But it is possible that here may exist 
another division in two, so, in consequence a density reduction in two.

Gay-Lussac showed that it was admitted that the dry sulfuric acid is 
made by 100 parts sulfur and 138 parts oxygen (after the weight) and 
that the sulfurous acid gas was 2.265 (referring to air as humidity) and 
if admitted (as a result of Gay-Lussac experiments) that the sulfuric acid 
is made by two parts of sulfurous acid, the volume is almost equal with 
the one of the oxygen which enter in the compound, and this equality will 
be exact if the method upon they are calculated will be the same. One 
founds in the sulfurous acid 100 parts sulfur taking 95.02 parts oxygen 
which enters in compound and in consequence in the sulfuric acid one has: 
95.02+95.02/2=142.53 instead of 138. If by contrary one assumes as exact 
the analysis of the sulfuric acid, it results that the acid contains 92 oxy-
gen for100 parts of sulfur and this is specific to the 2.30314 gravitation 
weights, instead of 2.265.

Once it appears the consideration for weight instead of the first guess-
ing the sulfurous gas density, as it was confirmed or rectified by new exper-
iments, meaning, it must have been an error in sulfurous acid composition 
determination, which made increasing the quantity of radical, or, which is 
the same thing, the diminution of the oxygen quantity. The determination 
was made from the dry sulfuric acid produced. Therefore, one can assume 
that the sulfurous acid should be composed by 95.02 parts oxygen to 100 
parts sulfur (or, more likely, sulfuric radical) instead of 92.

In order to determine the sulfuric radical molecule mass it would have 
been necessary the proportion after volume of this radical in gaseous state 
incorporating the oxygen in sulfurous acid formation to be known.

The analogy with other combinations (where a volume doubling or 
a division in half of the molecule generally exists) was leading to the 
assumption that the same behavior occur in the other cases: the sulfur 
volume as gas is half of sulfurous acid and therefore the same of half of the 
oxygen with which is combined.

With this supposition, the gas sulfur density will be the one of the oxy-
gen as 100 to 95.02/2, or 47.51, which gives 2.323 for the gaseous density 
of sulfur, taking the air as unit. The molecular masses being (in conformity 
with the given hypothesis) in the same ratio with the density which belongs 
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to the gases, i.e., the sulfuric radical mass will be the hydrogen one as 
2.323 to 0.07321, or as 31.73 to 1.

One of these molecules, combined with two of oxygen will form the sulfu-
rous acid and combined with another oxygen molecule will form the sulfuric 
acid. The sulfurous acid molecule (regarding the diffusion) will be equal with 
(31.73+2x15.074)/2, or 30.94, as it should be obtained directly from dividing 
the density 2.265 of the sulfurous acid gas through the hydrogen gas. For the 
sulfuric acid molecule, the weight was impossible to determine because it 
was not know if there is or there is not a molecular division in its formation.

The phosphor had a bigger analogy with the sulfur so that, apparently, it 
could be supposed that the phosphoric acid is made by three oxygen molecules 
to one radical and the phosphoric acid is structured only by two oxygen’s 
atoms and one radical. On this assumption we can calculate, approximately, 
the phosphoric radical molecule mass. One may found (through a method 
analog with the one used for the sulfuric acid, for example, by Rose) that 
the phosphoric acid contains 115 parts oxygen to 100 weights of phosphor. 
It should have been existed a bit more oxygen if one supposes that the phos-
phor contains hydrogen. As an approximation one can increase the figures in 
the same proportion as in the sulfurous acid case, where in agreement with 
the specific gravity of the sulfuric acid the oxygen quantity was increased to 
120 units. With such hypothesis it was found that the mass of the phosphoric 
radical is 38, with hydrogen as unit. Dalton adopted for the phosphor and 
the phosphoric acid the analog hypothesis as made for sulfur and sulfuric 
acid, but because he used different values for the elements of those acids 
after weight, it came to determination of phosphor molecule which do not 
fit in with the same determination ratio of sulfur molecule, between these 
molecules: he determine that the phosphor have the mass 8, the hydrogen 
being the unit.

He tries to determine the conjuncture which could be created by a mol-
ecule mass of a substance with a bigger role than sulfur or phosphor, 
namely the carbon. The volume of the carbonic acid was equal with the 
one of the oxygen which enter in the composition, then, if one should admit 
that the carbon volume, supposedly gaseous, which forms the other ele-
ment, is double by the division of molecules in two, same as this type of 
combination, it might be necessary to assume that this volume is half of 
the one of oxygen with which is combined, and therefore the carbonic acid 
results from the union of one carbon molecule and two oxygen molecules, 
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and because of that, holds the analogy with the sulfuric and phosphoric 
acid, in concordance with the previous suppositions. In this case from the 
weight proportions between oxygen and carbon it was found that the den-
sity of the carbon as gas should be 0.832 respecting the air units, and the 
mass of this molecule should be 11.6 with respecting the hydrogen.

There is still a difficulty in this assumption: because one gives to the 
carbon molecule a mass smaller than the masses of nitrogen and oxygen, 
one is tempted to attribute the aggregation solidity at the highest tem-
perature for a bigger molecular mass (same as it was observed in case of 
sulfuric and phosphoric radicals). So, there was assumed that in order to 
avoid this difficulty by assuming the molecular division in four, and even in 
eight, in forming the carbonic acid, the carbon molecule should have been 
twice or four times bigger than it was fixed to serve this purpose. But this 
type of composition will no longer be analog with the other acids and, in 
concordance with the known examples, the assuming or not assuming the 
gaseous state do not depend only by the molecule magnitude, but also by 
some substance properties, unknown yet.

The sulfuric acid is in gaseous form, on a usual temperature and pres-
sure of atmosphere, but not the entire molecule, which is almost equal with 
the solid form of the sulfuric acid radical. The oxygenate acid of chlorine 
gas have a density, and therefore a molecular mass, much more consider-
able. Therefore, it was nothing that could prevent treating the carbonic 
acid in the manner previously presented, this way (analog with the nitric, 
sulfuric and phosphoric acids) the carbon molecule also results with a 
mass expressed by 11.36 units.

Assuming the indicated values for the carbon molecular masses and its 
gas density, the carbonic oxide will be consisting, in conformity with the Gay-
Lussac experiments, from equal volume parts of carbon and oxygen, and its 
volume will be equal with the sum of their constituents’ volumes. The resulted 
molecule will be formed from carbon and oxygen units, molecule to molecule, 
with an analog behavior to the nitrous gas. The mass of the carbonic acid 
molecule will be (11.36+2×15.074)/2=20.75=1.5196/0.07321 and the one 
of the carbonic oxide will be given by (11.36+15.074)/2=13.22=0.96782.

In this context, Gay-Lussac assumed that the mercurous oxide, in 
whose formation 100 parts mercury absorb 4.16 parts oxygen is combined 
in half of the volume with the oxygen gas as 100 to 8.32, which will give 
13.25 as density with unity air and the mercury molecule mass 181 with 
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hydrogen as unity. In this case the mercury oxide which contains twice 
more oxygen should be formed from mercury and oxygen, molecule to mol-
ecule. But by some reasoning may found that the mercury oxide is actu-
ally mercurous oxide and that in the mercury oxide a mercury molecule is 
combining with two oxygen molecules. Then, the mercury gas density and 
its molecule mass should be double, starting from the hypothesis 261/2 
for the first one and 362 for the second one (by analogy with other metals 
and in particular with the iron). However, from different chemical experi-
ments (e.g. as analyzed by Hassenfrantz) it may result that two well known 
oxides of the iron (black and red oxide) are made from 31.8, respectively, 
45 parts of weight oxygen to 100 iron. If one observes that the second 
from these quantities of oxygen was with almost half bigger than the first, 
there is natural to assume that in the first oxide an iron molecule is com-
bining with two oxygen molecule, and in the second with three. This way 
and while admitting the proportion for the black oxide, the proportion 
for the red oxide should be 47.7 for 100 of iron, which is very close of the 
proportion found by Proust. The iron molecule mass should have been the 
oxygen molecule mass as 100 to 15.9, which gives approximately 94 with 
respecting the hydrogen as unit. From these considerations it seems that 
there should be another iron oxide which contains 15.9 oxygen to 100 iron, 
although the experiments made on this substance contain a big proportion 
of oxygen. Now, about the given two mercury oxides, one which contain 
twice more oxygen than the other, it should be apparently analogs with the 
last iron oxide and the blank oxide, that the red oxide not having analog 
in case of mercury.

Gay-Lussac suspected that the volume’s equality between the gaseous 
alcanes and the acids (with which they unite and form a neutral salt) can 
be a general rule. The neutral salt consists in acid and alkali uniting mol-
ecule to molecule. Some consideration seems to be opposing to admit-
ting this principle in a general acceptation. The acidity, alkalinity and 
neutrality ideas seem to be the most comfortable for this phenomenon. 
According with this approach, all substances form between each other 
though a series, in which they play either as acid, either as alkali, with 
respecting each others. Also, these series were the same as those depend-
ing on the negative or positive electrical properties which are developing 
on their mutual contact.
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In conclusion, the Dalton system assumes that the compounds are 
made generally by fix proportions and this will show up in the experiments 
with respecting the compounds more stable and more interesting for chem-
ists. It seems that only this type of combination occurs among the majority 
of gases, considering the enormous size of molecules which would result 
from ratios expressed through high numbers, despite the molecular divi-
sion, which definitely occurs in small limits. However, there was perceived 
that the molecule packing in solids and liquids (which goes to the integral 
distinction between the same type of molecules respecting the elementary 
ones) can lead to even more complicated ratios, and even combinations 
in any kind of proportion; these compounds should have been a start-
ing model and this distinction can serve to the Berthollet idea, according 
which the compounds occur because of their fixed (combined) properties 
(Avogadro, 1811).

1.2.4 ANALOGIES IN THE STRUCTURE OF SUBSTANCES, BY 
HUMPHRY (1812)

David Humphry took a somehow bottom-down method and charac-
terized the atomic behavior in molecules by observing and analyzing the 
molecular similarities, through the following sentences of his classical 
paper (Humphry, 1812):

The substances which were not included in compounds, were analogs 
with each other and definitely were found among metals; one of them are 
so similar such that refined observations are necessary and sometimes 
(new) experiments in order to distinguish them. There is a gradual chain 
of resemblance which can be followed along the metallic corps series; 
in the same time there are several properties similar and characteristics 
which belong to meals with respecting to each other. Silver and palladium, 
antimony and tellurium are alike qualitative. Potassium and platinum, if 
one accepts the observations regarding polish, color and the possibility of 
conducing electricity, are extremely different elements. Still, by arranging 
the metals in the order of their natural properties which resemble between 
them, these last two substances can be made parts of a natural elemental 
chain: potassium, sodium and barium are most alike; barium is close to 
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magnesium, zinc, iron and antimony. Platinum is analog to gold, silver 
and palladium. And palladium is in connection with zinc and iron. Arsenic 
and chromium, among the most different metals, are the same in the prop-
erties of the acid mater formation by combining with oxygen. Chlorine 
and oxygen are separated by the flammable elements by a number of dis-
tinctions. Still, sulfur is alike chlorine in forming the acid by combination 
with hydrogen and it have a weak attraction for chlorine and a powerful 
attraction for metallic substances.

1.2.5 ON CHEMICAL PROPORTIONS, BY BERZELIUS 
(1813–1814)

With Berzelius’ thoughts begins the quantification of chemical substances, 
in atomic proportions, while assessing to the atomic term a universal onto-
logical signification (Berzelius, 1813–1814):

The fact that elements are combining in different proportions when 
there is no force to be opposing to their reunion, added up to the observa-
tion that when two bodies A and B are combining in different proportions 
(the additional proportions of one of them are always multiple of integer 
number 1, 2, 3) lead to the conclusion that there is a cause which made 
other combinations impossible. Now, what was this cause? It was clear 
that the answer of this question should constitute the principal of the theo-
retical chemistry.

When reflecting on this cause, it seems obvious that there is a natural 
mechanism and which represent itself most probable and comfortable to 
the experience, employing the idea that the elements consist in atoms 
or molecules which are combining as: 1 to 1, 1 with 2 or 3 with 4. Even 
the chemical proportions’ law seems to clearly result from this. An idea 
like this was very simple and most likely to not be adopted and even to 
not be proposed until our present time. As best as we known the English 
philosopher John Dalton (guided by the experiments of Bergman, Richter, 
Wenzel, Berthollet, Proust and others) was the first person which was 
ventured to establish such hypothesis.

On the other side, there seems necessary that when an atom of the ele-
ment A is combined with one or more atoms of the element B (in order to 
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form a new atomic compound) the atom A should touch every atoms of B. 
From this forward, the atomic compound was formed from the juxtapos-
ing of several elementary atoms, same as an aggregate was formed from 
juxtaposing of different homogenous atoms. But the difference consist in 
the fact that, in the first case will occur an electric discharge of the polar-
ity specific to heterogeneous atoms, which could not occur between the 
homogenous atoms.

An atomic compound, for obvious rationalizations, cannot be consid-
ered spherical. But, because it is made by atomic mechanical indivisible 
parts (or which cannot be separated by mechanical methods) the atomic 
compound is almost completely mechanically invisible as an elementary 
atom. Also, it was obvious that an atom made from A+3B should be big-
ger, and has a different figure respecting an atom made by A+B. The figure 
(structure) should have the form of an equilateral and triangular pyramid, 
while the last one should have a linear form.

The atoms were divided in two classes:

1. Elementary atoms;
2. Composed atoms.

The composed atoms were by three different species:

1. Atoms formed by two elementary substances united, called com-
posed atom of first order (kind).

2. Atoms formed of more than two elementary substances (how many 
was only found in the organic elements or elements obtained by the 
organic matter destruction) called organic atoms.

3. Atoms formed by the union of two or more composed atoms (as exa- 
mple, the salts) called composed atoms of second order (kind).

The biggest number of spherical atoms of the same diameter, capa-
ble of touching only one atom of the same diameter was 12. From this 
there followed that A+12B contains the bigger number of atoms which 
can be contained in an composed atom of first kind. If, on the other 
hand, we are paying attention to the electric polarity of atoms, an atom 
A cannot combine with more than 9B atoms if the atom A+9B con-
serves any part of the original electrical polarity of A. For example, 
the oximuriatic acid which was a compound of an atom of muriatic 
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radical and 8 oxygen atoms it conserves another part of the radical 
original polarity by meanings with which will react.

There appears as contrary to the sound logics the representation of a 
compound atom of first kind as being composed by two or more A atoms 
combined with two or more B atoms. For example, 2A+2B, 2A+3B, 7A+7B, 
etc. In this case there were no obstacles, nor mechanical nor chemical, in 
order to prevent such an atom to be divided, by pure mechanical means, 
in two or more atoms by a simple (de)composition. Then, such a composi-
tion almost destroys totally the chemical properties. From such a result, 
by declaring the result of this analysis comfortable on the corpuscular 
theory, one might have to consider some of the (decomposing resulted) 
constituents as unitary.

Another method for seeing the chemical properties was a method 
founded by the phenomena discovered by Gay-Lussac: the elements which 
are in gaseous state are uniting either in equal volume, or 1 volume from 
one is combined with 2 and 3 volumes from the other partner. This fact 
was verified but some distinguished chemists. By what it was known, with 
respecting the defined proportions, it follows that there will be kept all the 
elements on temperature and pressure which assume the gaseous form. 
But there is no difference between the atomic theory and the volume the-
ory, unless that one represents the elements in solid form and the other in 
gaseous form, respectively. However, it was clear that what is called in a 
theory as an atom in the other one is called as volume. The volume theory 
had the advantage to be constituted on the well known (observable) phe-
nomena, while the other one has as a fundament only a supposition. In the 
volume theory it could imagine a half volume, while in the atom theory a 
demy-atom seems absurd. On the other hand, the volume theory has the 
disadvantage, the one which the atom theory did not present it, precisely 
the existence of the composed compound (especially of organic nature) 
which cannot be assumed to exist in gaseous form.

In the volume theory it was not possible the assumption of combining 2 
volume with 3, for this type of supposition there is no reason to explain the 
fact why 4 volumes should not combine with 5, 7, with 1000. In this case, 
there is no reason to believe in chemical proportions. Like in the atoms 
theory, it was absolutely necessary that in each compound one of the con-
stituents should be considered a single volume.
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It was obvious that if the weight of elementary element volumes should 
have been known (and express in numbers) they do not have anything 
else to do, in the analysis case, than to count the relative number of con-
stituents parts volumes, regardless their aggregation form, but in order to 
obtain the relative weight of the elementary volumes expressed in numbers 
(meaning to be obtained the specific gravity in gas form) they must had a 
general measure to compare with. One could chose between the elemen-
tary elements, as ontological entities, when the volume weight will be the 
unit, same as the water was chosen as unit for determining the specific 
gravity of liquids and solids.

There were only two elements which posed the necessary qualities to 
serve as unit. They were the oxygen and the hydrogen. But the hydrogen 
has disadvantages which the oxygen did not present. The hydrogen volume 
weight was so small that if it is taken as unit, the number which represents 
the volume for some metals became very big. Then, the hydrogen enters in 
fewer compounds than the oxygen; and of course the number 100, when 
it was applied to hydrogen, does not facilitated the calculation as when 
it had been applied to oxygen. Among the elementary bodies, the oxy-
gen constituted a particular class; it is the center around which chemistry 
turned on. There was a greater number of inorganic bodies and without 
exception in all the products of organic nature.

Firstly, it seems reasonable to assume that the bodies tend to com-
bine in equal volumes in general; but by examining a great number of the 
elementary bodies’ combinations, we found that those who distinguished 
(a strong affinity between the constituent parts, and through the force of 
the chemical affinity for other bodies) obviously contain more than a vol-
ume of one of their elements (as in water, carbonic acid, nitrous gas) and 
with few exceptions, was almost always the case the electro-negative ele-
ment the volume of which was multiplied.

The experiment seemed to prove that if a combustible radical is pref-
erably combined with two or three volumes of oxygen, it also combines 
with two or three volumes of sulfur. If this oxide was neutralized by an 
acid, it was supposed that the resulting neutral combination should have 
contained (for one volume of the oxide radical) as many volume of the 
acid radical as the oxide contains volume of oxygen; and therefore, that 
the number of times which the acid contains the oxygen of the oxide will 
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be the number of the oxygen volumes combined with one volume of acid 
radical; for example, the sulfuric acid was considered as consisting of a 
one volume of radical and three volumes of oxygen, because it was very 
likely that the amount of sulfur and oxygen to be able to combine (at a high 
temperature) with a given portion of lead and having equal volumes. But 
if we want to know, by another method, how many volumes of oxygen are 
in the sulfuric acid? (Wiki, 2013a)

We have to examine the composition of some sulfate (Wiki, 2013b)

The black oxide of the iron contains one volume of metal and two volumes 
of oxygen. Considering this, there results that the iron black oxide should 
be neutralized by an amount of acid containing two volumes of sulfur for 
each volume of iron, so that the number of the sulfur volumes of acid and 
the oxygen of base to should be equal. Yet the acid contains three times 
more oxygen respecting a base; therefore, it was composed of three vol-
umes of oxygen and a volume of sulfur. If, instead of the iron sulfate, the 
iron persulfate should be chosen, appears obvious that in this case the iron 
was combined with three volumes of sulfur, otherwise the result will be the 
same (Berzelius, 1813–1814).

1.2.6 STRUCTURE ANALOGIES ON SUBSTANCES’ GROUPING, 
BY DÖBEREINER (1829)

The first illustrative quantitative proportions of atoms in molecules as 
driven by similarity of atomic compositions/contribution to molecular 
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samples were given by Döbereiner (1829) through the following 
considerations:

The specific gravity and the atomic weight of the strontium are very 
close to the average of the specific gravities and the atomic weights of the 
calcium oxide and the barium oxide

  (1.1)

which is very close to the atomic value of soda.
If the sulfur, selenium and tellurium belong to a group, that could be 

assumed (because the specific gravity of selenium was exactly the aver-
age of the specific gravities of the sulfur and tellurium) and all the three 
substances are combining with hydrogen to form characteristic hydrogen 
acids, then selenium forms the middle member

  (1.2)

and the empirically value found for the selenium atom is 79.263.
Indeed, the fluorine belongs to the elements which forms salts, but cer-

tainly not to the chlorine, bromine and iodine group. Rather it belongs to 
another class of substances which can form salt that can relate with the 
first, the alkalis and alkaline earths. Because it has a very small value, 
apparently it stays as the first member of an assumed group; also in this 
case there are another two more members to discover, if the triads repre-
sent the law for all the chemical substances groups. This happens if the 
values of the atomic weights of the substances grouped together are com-
pared with the intensity of the chemical affinity that these substances man-
ifest; consequently one founds that the alkalis and the alkaline earths are 
directly proportional, but in formation the elementary salts are inversely 
proportional.

One may combine potassium, which has the largest value between 
the alkalis (was the strongest), with the lithium, which have the smallest 
value (was the weakest), and soda, which has the middle value between 
potassium and lithium, i.e., weaker than the potassium and stronger 
than lithium. The barium oxide, the calcium and the strontium oxides 
behave the same way. However, the chlorine which has the smallest 
value is the strongest and the iodine which presents the greatest value 
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is the weakest in the formation of salt and the bromine stay between 
these two. If one expresses the intensity of the chemical affinity of the 
substances groups with the numbers 1, 2 and 3, these considerations 
were arranged as in Table 1.2.

The hydrogen, the oxygen, the nitrogen and the carbon seem to stay 
isolated from the substances which form bases, acids and salts. The fact 
that the average of atomic weight of the oxygen=16.026 and of the car-
bon=12.256 express the atomic weight of nitrogen=14.138, could not be 
considered here, as long as no analogy took place between these three 
substances.

TABLE 1.2 Combination of Elements Forming Salts, Acids, Along Alkaline and Earth 
Alkaline Ions Paralleling Their Chemical Affinity Changes (Döbereiner, 1829)

Elements Which Form Salts and Their Acids Intensity of Chemical Affinity

 
3

1

2

Elements Which Form Acids and Their Acids
3

1

2

Elements Which Form Alkali and Alkalis
1

3

2

Elements Which Form Alkaline Earths
1

3

2
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The earth metals and the earths themselves were in the same place, 
according to their similarities, but one had not successfully ordered them. 
It is true that they form boron and silicon, aluminum and beryllium, yttrium 
and cerium, which are special groups, but each of them lacked in the third 
member. The magnesium stayed alone and the zirconium belongs to the 
titanium and the tin.

The heavy metal group of the substances was fulfilled. Its factors are 
the iron oxide, the magnesium oxide and the chromium oxide; the last 
formed the middle member because we have

 (979.426 Fe + 1011.574 Mn)/2 = 995.000 Cr (1.3)

According to Mitscherlich, Fe, Mn, Ni, Co, Zn and Cu are isomorphic 
with the magnesium. This was an interesting series of substances, because, 
firstly, they belonged to the magnetic metals and secondly, they are the 
best conductors of electricity. But how they have arranged themselves if 
the triad was the principle of grouping? In nature, Fe, Mn and Co are 
found in oxides which are frequently found together and the Ni, Zn, and 
Cu oxides are found together with minerals, from which by the Chinese 
people prepared copper, and to which the Germans call it Argentan. If this 
happens, then in the first group the manganese forms the third member, 
because:

 (439.213 Fe + 468.991 Co)/2 = 454.102 Mn (1.4)

and in the second group the copper is occupying this position:

 (469.675 Ni + 503.226 Zn)/2 =486.450 Cu (1.5)

However, the copper weight was 495.695 and the specific gravity of cop-
per was not the average of the specific gravity of nickel and zinc, therefore, 
these six oxides should be grouped differently. A rigorous experimental 
review of the specific gravity and the atomic weights could remove these 
doubts. The most interesting analogous metals series are those found in 
the minerals of platinum, where are found: the platinum, palladium, rho-
dium, iridium, osmium and pluranium. They exist in two groups, according 



28 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

to their atomic weights. The platinum, iridium and osmium belong to the 
first group, and the palladium, rhodium and pluranium to the second one. 
For the first group members, the atomic weights (according to the work 
of Berzelius) are as follows: for platinum 1233.60, for iridium 1233.260 
and for osmium 1244.210. Because the specific gravity of the iridium was 
almost the average of the weight of platinum and of osmium, the irid-
ium must be considered the middle member: (1233.260 + 1244.210)/2 = 
1238.735. The atomic weights for the second group members (accord-
ing to the same researchers) are: for palladium 665.840 and for rhodium 
651.400. Therefore, we have for pluranium 636.960; if the atomic weight 
stays so near to the platinum and iridium, then the rhodium will be the 
middle member of this group.

The specific gravity and the atomic weight of the lead are close to the 
specific gravity average and of the atomic weights of silver and mercury; 
so, these three metals can be put together (Döbereiner, 1829).

1.2.7 ELEMENTAL EQUIVALENTS AND THE OCTAVES’ LAW, BY 
NEWLANDS (1863)

The atomic universality of atoms belonging to the same element was 
advanced by Newlands (1863) by a philosophical analogy with the music 
of spheres, through the octaves (so anticipating the octet rule), and conse-
crated as following:

Many chemists (and M. Dumas in particular), on several occasions, 
pointed out the existence of some interesting relations between the equiva-
lents of the bodies which belong to the same natural family or group.

The following relations are among the best; they are observed by com-
paring the analogous elements equivalents (in order to avoid the frequent 
repetition of the word “equivalent,” it was generally used the name of 
various elements as representing their equivalent; so when the term zinc 
is used it is also the average of magnesium and cadmium, so trying to be 
induced that the equivalent of the zinc is the average of magnesium and 
cadmium).

Group I. The alkalis metals: Lithium 7; Sodium 23, Potassium 39, 
Rubidium 85, Cesium 123, Thallium 204. The relationship between the 
equivalents of this group can be presented as in Table 1.3.
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Group II. The alkaline-earths metals: Magnesium 12; Calcium 20; 
Strontium 43.8; Barium 68.5. In this group, the strontium is the average 
between calcium and barium.

Group III. Earth metals: Beryllium 6.9; Aluminum 13.7; Zirconium 33.6; 
Cerium 47; Lanthanium 47; Didymium 48; Thorium 59.6. The aluminum 
is twice the beryllium, or the third part from the sum of beryllium with 
zirconium (see Table 1.4).

Group IV. The metals whose protoxides are isomorphic with mag-
nesium: Magnesium 12; Chromium 26.7; Manganese 27.6; Iron 28; 
Cobalt 29.5; Nickel 29.5; Copper 31.7; Zinc 32.6; Cadmium 56. Between 
magnesium and cadmium (the extremities of this group) zinc is the aver-
age. The cobalt and nickel are identical. Between cobalt and zinc, copper 
is the average. The iron is half of the cadmium. Between the iron and 
chromium, the magnesium is the average.

Group V: Fluorine 19; Chlorine 35.5; Bromine 80; Iodine 127. In this 
group, the bromine is the average between chlorine and iodine.

Group VI: Oxygen 8; Sulphur 16; Selenium 39.5; Tellurium 64.2. In 
this group the selenium is the average between the sulfur and tellurium.

Group VII: Nitrogen 14; Phosphorus 31; Arsenic 75; Osmium 99.6; 
Antimony 120.3; Bismuth 213. In this group the arsenic is the average 
between phosphorus and antimony. The osmium is closer to the average 
between arsenic and antimony, and is almost exactly half of the differ-
ence between nitrogen and bismuth, the two extremities of this group, 

TABLE 1.4 Selective Combinations of Earth Metal Elements (the Lanthanium and the 
Didymium Were Identical With Cerium, or Close) (Newlands, 1863)

1x Zr +1x Al = 1xCr (cerium)
1x Zr +2x Al = 1xTh (thorium)

TABLE 1.3 Succesive Combinations of Elements of the First Group (Newlands, 1863)

1x Li +1x K = 2xNa (sodium)
1x Li +2x K = 1xRb (rubidium)
1x Li +3x K = 1xCs (cesium)
1x Li +4x K = 163 equivalent of an undiscovered element 
1x Li +5x K = 1xTl (thallium)
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therefore 99.5. The bismuth is equal to 1 of antimony + 3 of phosphorus, 
thus: 120.3+93=213.3.

Group VIII: Carbon 6; Silicon 14.2; Titanium 25; Tin 58. In this group 
the difference between tin and titanium is almost three times higher than 
that of titanium and silicon.

Group IX: Molybdenum 46; Vanadium 68.6; Tungsten 92; Tantalium 
184. In this group the vanadium is the average between molybdenum and 
tungsten. The tungsten is equal to 2 of molybdenum and the tantalium was 
4 of molybdenum.

Group X: Rhodium 52.2; Ruthenium 52.2; Palladium 53.3; Platinum 
98.7; Iridium 99. In this group the first three are identical (or closed) and 
there are more than half of the other two.

Group XI: Mercury 100; Lead 103.7; Silver 108. The lead is the average 
of the other two. If one deduces the group member with the lowest equiva-
lent from the immediately one (from above it), it is frequently observed that 
the numbers thus obtained lead to a simple relation for everyone, as in the 
examples of Table 1.5.

Worth drawing the attention about the existence of a law with the fol-
lowing effect: “the atomic weights of the elementary bodies, with few 
exceptions, are exactly or very close multiple of eight.”

Next, we present some explicative remarks for the various groups in 
the Table 1.6.

Group II: Boron is classed with gold, both elements being triatomic, 
although the last is sometimes monatomic.

Group III: Silicon and tin are placed next to each other, as the extrem-
ities of a triad. Titanium is placed next to them and occupies an interme-
diate position between silicon and the central term or the triad average, 

TABLE 1.5 Example of Quivalents and Their Atomic Weights’ Differences (Newlands, 
1863)

Magnesium 12 Calcium 20 Δ =8
Oxygen 8 Sulphur 16 Δ =8
Carbon 6 Silicon 14.2 Δ =8.2
Lithium 7 Sodium 23 Δ =16
Fluorine 19 Chlorine 35.5 Δ =16.5
Nitrogen 14 Phosphorus 31 Δ =17
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therefore (Si 28 + Sn 118)/2 = 73, (Si 28 + the triad average 73)/2 = 50.5, 
Ti=50.

Group IV: The equivalent of the antimony is almost the average of 
phosphorus and bismuth, and thus: (31+210)/2 = 120.5.

Group VII: The relations with which M. Dumas pointed out the differ-
ences between this group members were well known; a little change had 
to be made, the atomic weight of cesium has to be increased, as exposed 
in Table 1.7.

TABLE 1.6 The Equivalent Relationship Among Elements From Various Groups 
(Newlands, 1863)

TRIAD

Group Lowest term Mean Higest term
I. Li 7 +17 = Mg 24 Zn 65 Cd 112
II. B 11 Au 196
III. C 12 +16 = Si 28 Sn 118
IV. N 14 +17 = P 31 As 75 Sb122 +88 = Bi 210
V. O 16 +16 = S 32 Se 79.5 Te 129 +70 = Os 199
VI. F 19 +16.5 = Cl 35.5 Br 80 I 127
VII. +16 = Na 23 +16 = K 39 Rb 85 Cs 133 +70 = Tl 203
VIII. +17 = Mg 24 +16 = Ca 40 Sr 87.5 Ba 137 +70 = Pb 207
IX. Mo 96 V 137 W 184
X. Pd 106.5 Pt 197

TABLE 1.7 The Elements’ Combinations Through Their 
Atomic Wights Equivalents (Newlands, 1863)

Li + K = 2 Na ≡ 7 + 39 = 46 
Li + 2 K = Rb ≡ 7 + 78 = 85 

2 Li + 3 K = Cs ≡ 14 + 117 = 131 
Li + 5 K = Tl ≡ 7 + 195 = 202 

3 Li + 5 K =2 Ag ≡ 21 + 195 = 216
Li + Ca = 2 Mg ≡ 7 + 40 = 47 
Li + 2 Ca = Sr ≡ 7 + 80 = 87 
2 Li + 3 Ca = Ba ≡ 14 + 120 = 134 
Li + 5 Ca = Pb ≡ 7 + 200 = 207
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The silver equivalent is connected with the one of alkali metals; It 
could be seen as being made of sodium and rubidium equivalents, there-
fore: 23 + 85 = 108. Also, it is almost half of rubidium and cesium: (85 + 
133)/2 = 109.

Group VIII: if lithium was considered as connected with this group as 
well as with the previous one, the same calculations as before are reported 
in the lower four positions of Table 1.7.

Again, there are two triads in the alkali metals group, from which one 
was known (lithium, sodium and potassium) and the other was observed 
by Mr.C.W. Quin (in the Chemical News, November 9, 1861) consisting of 
potassium, rubidium and cesium. Therefore, the potassium is the highest 
term for a triad and the lowest term for another triad.

Likewise, if lithium is included, we will have among the alkaline earths 
metals two triads: the first one including lithium, magnesium and calcium, 
and the second one with calcium, strontium and barium. Calcium is the 
highest term for a triad and the lowest for another.

The lead occupied a position (in relation with the metals from the 
alkaline earths) similar with that occupied by thallium in the group of 
alkali metals. Osmium seems to play a similar role in the sulfur group 
and the bismuth in the phosphorus group. The analogous term in the chlo-
rine group was not known yet. Thallium, with its physical properties, had 
some similarities with the lead and frequently happened that the similar 
terms from different groups (such as oxygen or nitrogen, or sulfur and 
phosphorus) to bear more physical similarities with each other than with 
the members of the same group; from chemical reasons were required to 
assign them as such.

Worth being noted that the difference between the equivalents of tel-
lurium and osmium, cesium and thallium, barium and lead, is the same in 
every case; the group X-Palladium and platinum seems to be the extremity 
of the triad, the average of something unknown (Newlands, 1863).

John A.R. Newlands in the work “The Law of Octaves and the Causes 
of Numerical Relations among the Atomic Weights” claimed to have dis-
covered a law according to which the elements with analogous properties 
have relations peculiar similar to those in music, between a note and its 
octave, see Table 1.8 (Newlands, 1863). Starting from the atomic weights 
of the Cannizzarro’s system, the author arranges the known elements in 
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order of succession, starting with the lowest weight (hydrogen) and ending 
with thorium, however placing nickel, cobalt, iridium, cerium and lan-
thanum in positions of absolute equality in the same line. The 56 items 
form eight octaves and the author found that chlorine, bromine, iodine and 
fluorine are brought on the same line, or occupy appropriate places in this 
scale. So, the doors of the chemical Copernican revolution were opened 
for the most-expected Periodic Systems of elements.

1.3 MENDELEEV’S LEGACY FOR MODERN CHEMISTRY

1.3.1 FROM ALCHEMY TO CHEMISTRY, BY MENDELEEV (1869)

Dalton revived the atomic matter theory, adding the key idea that dif-
ferent elements have different characteristics of atomic weights. In his 
paper, some of the earliest descriptions of molecular structure, in which 
the atoms from a molecule are arranged in space in a certain manner are 
also presented. The Dalton atomic theory was the first to give significance 
to the relative weights of the last (in elementary meaning) particles of the 
all known compounds and provided a quantitative explanation of the phe-
nomena that accompany chemical reactions. Dalton believed that all mat-
ter was composed from indestructible and indivisible atoms, of different 
weights, each weight corresponding to a chemical element and that these 
atoms remain unchanged during chemical processes. The experiments 
with atoms relative weights, forced Dalton to construct the first periodic 
table of elements and to formulate laws concerning their combinations and 

TABLE 1.8 Elements Arranged in Octaves (Newlands, 1863)

“Do” “Re” “Mi” “Fa” “Sol” “La” “Si” “Doo”
H 1 F 8 Cl 15 Co & Ni 22 Br 29 Pd 36 I 42 Pt & Ir 50
Li 2 Na 9 K 16 Cu 23 Rb 30 Ag 37 Cs 44 Os 51
G 3 Mg10 Ca 17 Zn 24 Sr 31 Cd 38 Ba & V 45 Hg 52
Bo 4 Al 11 Cr 19 Y 25 Ce & La 33 U 40 Ta 46 Tl 53
C 5 Si 12 Ti 18 In 26 Zr 32 Sn 39 W 47 Pb 54
N 6 P 13 Mn 20 As 27 Di & Mo 34 Sb 41 Nb 48 Bi 55
O 7 S 14 Fe 21 Se 28 Ro & Ru 35 Te 43 Au 49 Th 56
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to provide schematic representations of different combinations of atoms. 
His conception of “atom” and “chemical element” was of fundamental 
importance, because it provided to the chemists a new and enormous 
model of reality. Of the various representations Dalton ensured the sym-
bol for atoms of different elements and their compounds. Based on these 
symbols and their accompanying theory, Dalton is known as the “father of 
modern chemistry.

Mendeleev’s discovery (of the periodic law and the periodic table of 
elements) was for the first time announced to the European researchers 
in a short German article, published on Zeitschrift für Chemie in 1869. 
Mendeleev discovered the periodic law while he was preoccupied to 
writing the first edition of the chemistry textbook, Osnovy Khimii (see 
Figure 1.2). Mendeleev’s approach was based on four aspects of mat-
ter, which reveal close relationships between certain chemical elements. 
These four aspects were: isomorphism, the specific volume for the simi-
lar compounds or elements, the composition of compound salts and the 
relationship between atomic weight of elements. Since the periodic law 
depended on the quantitative relations between the atomic weight (as an 
independent variable), the physical element and the chemical property, in 
1869, Mendeleev took over the developing of a “whole natural system of 
elements.” It unfolded a deduction in order to discover the boldest and the 
ultimate logical consequence of the law so that by checking it, to confirm 
the law itself. Among these consequences it is the prediction of chemi-
cal property of several unknown elements. Already in 1870 two elements 
were discovered, those we now know as gallium and germanium, and hav-
ing almost exactly the properties predicted by Mendeleev.

1.3.2 ON ATOMIC WEIGHTS—ELEMENTAL PROPERTIES’ 
RELATIONSHIPS, BY MENDELEEV (1869)

The Mendeleev’s chemical revolution starts with its 1969 the landmark 
paper, shortly revived as following (see Figure 1.2):

The elements arrangement (according to the increasing of the atomic 
weights) in vertical columns is made so that the horizontal rows contain 
analogous elements (also arranged by the increasing of atomic weight) is 
obtaining as in Table 1.9 (Mendeleev, 1869a).
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FIGURE 1.2 The first rationalization of the Periodic Table jointly published by Mendeleev in 1969 in the German Journal of Chemsitry 
(Zeitschrift fuer Chemie)—the second slide from left to right side, as well as in his Russian textbook on Principles of Chemistry (Osnovy 
Khimii)—in the second slide from right side (Mendeleev, 1869a,b).
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Accordingly, one notes the fundamental features, namely (Mendeleev, 
1869a):

1. The elements, if arranged according to their own atomic weights, 
present a periodicity of properties.

2. The analogous chemical elements have either similar atomic 
weights, or their weight increases with equal increments.

3. The arrangement according to the atomic weight corresponds to the 
element valence and until a specific extents which determines the 
chemical behavior, such as Li, Be, B, C, N, O, F.

4. The elements chaotically distributed in nature have smaller atomic 
weights and all these elements are distinguished by their behavior 
(they are representative elements), and therefore, the lightest ele-
ment H is in right chosen as the most representative.

TABLE 1.9 The Analogy Between Properties and Atomic Weight of Elements 
(Mendeleev, 1869a)

Ti=50 Zr=90 ?=180
V=51 Nb=94 Ta=182
Cr=52 Mo=96 W=186
Mn=55 Rh=104,4 Pt=197,4
Fe=56 Ru=104,4 Ir=198
Ni=Co=59 Pd=106,6 Os=199

H=1 Cu=63,4 Ag=108 Hg=200
Be=9,4 Mg=24 Zn=65,2 Cd=112
B=11 Al=27,4 ?=68 Ur=116 Au=197?
C=12 Si=28 ?=70 Sn=118
N=14 P=31 As=75 Sb=122 Bi=210?
O=16 S=32 Se=79,4 Te=128?
F=19 Cl=35,5 Br=80 J=127

Li=7 Na=23 K=39 Rb=85,4 Cs=133 Tl=204

Ca=40 Sr=87,6 Ba=137 Pb=207
?=45 Ce=92
?Er=56 La=94
?Yt=60 Di=95
?In=75,6 Th=118?
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5. The magnitude of the atomic weight determines the properties 
of an element. Therefore, in the study of compounds, not just the 
quantities, properties of the elements and their reciprocally behav-
ior should be considered, but also the atomic weight of elements. 
Therefore, the compounds of S and Te, Cl and J, have enough simi-
larities, but also significant differences.

6. the discovery of some new elements can be predicted; for example 
the analogs of Si and Al with atomic weights of 65 to 75.

7. Some atomic weights probably require corrections, for example Te 
cannot have the atomic weight 128, but rather 123–126.

1.3.3 ON ATOMIC WEIGHTS—ELEMENTAL PROPERTIES’ 
RELATIONSHIPS, BY MEYER (1870)

Mendeleev’s Keplerian’s ideas of periodicity were nevertheless also 
advanced, by another contemporary scientist, Meyer (1870), yet lacking 
somehow of elemental prediction in terms of atomic weight and or atomic 
number position:

The regularities that exist between the numerical values of the atomic 
weights are not observed by various authors (between different elements), 
yet are also very distinctly presented. Since we are not basing our consid-
erations on the argument of the so-called “the equivalents” of Gmelin, but 
we use the atomic weights (determined by Avogadro and Dulong and Petit) 
the presentation of these regularities was considerably simplified. Even in 
1864 there were found some regularities which lead to the family scheme 
of the chemical elements, considered until then as different. By the right 
determination of the various atomic weights, it was possible to arrange 
in the same scheme of the discovered elements. Mendeleev showed that 
such an arrangement is obtained if the atomic weight of all the elements 
(with no arbitrate selection) are merely arranged in series, according to 
the numerical values of sizes. These series are divied in sections and are 
together added in the succession.

The table contains all the elements (of those atomic weights established 
through the compounds gas density or through the heat capacity) arranged 
according to the increase of the atomic weight, with only one exception of 
the hydrogen (which seems to be anomalous) and also including Be and 
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In, of those atomic weight probably derive from the equivalent weights, 
in total 56 elements. Besides H, it is missing only Y, Eb, Ce, La, Di, Th, 
U, Jg, with no atomic weight which was known and even some of which 
equivalent was undiscovered. The Table 1.10 is actually identical to the 
one given by Mendeleev (1869a).

While the elements will follow the nine vertical rows (to the first until 
the last depending by their molecular weight), the horizontal rows include 
the natural families. In order to obtain this arrangement, certain elements 
(of which atomic weight was found almost equal and which probably was 
not very carefully determined) have to be rearranged: tellurium before 
iodine, osmium before iridium and platinum, and these before the gold.

If we assumed that the atoms are the aggregate of the same material 
and are different only in terms of masses, then we can consider the ele-
ments properties as depending on the atomic weighting size. They appear 
as a direct function of the atomic weight. The table gives to us the concep-
tion that the elements properties are, most of them, periodic function of the 
atomic weight. Same properties, or similar, reappear if the atomic weight 
has a certain size, after 16 units, then after 46, and finally 88 until 92 units.

For example, if we are starting with Li, we find that after an increase 
of 16 units, these properties are found in Na, and again after 16 units, in 
K. However, we find in the various series, the first elements Be, B, C, N, O, 
F and then Mg, Al, Si, P, Cl, apparently with no average of transition, but 
the atoms saturation ability increase and decrease in regular way and is 
equal in both intervals (Meyer, 1870).

1.3.4 ON ELEMENTAL PERIODICITY, BY MENDELEEV (1889)

As later Gilbert Newton Lewis advanced the idea of atomic structure and 
chemical bonding, Mendeleev (1889) made the necessary passage from 
atomic periodicity feature to molecular composition by employing the 
atomic physicochemical features, eventually originating in atomic weights 
and number (latter with quantum mechanical relevance):

The observations made with the spectroscope, permitted to analyze 
the chemical constitution by the distant lights, at the beginning, appli-
cable to the challenge in determining the nature of the atoms themselves, 
but the laboratory work immediately demonstrated that the spectral 
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TABLE 1.10 The Arrangement of the Elements Discovered in 1870 (Meyer, 1870)

I II III IV V VI VII VIII IX
B=11.0 Al=27.3 -- ?In=113.4 Tl=202.7

-- -- --
C=11.97 Si =28 -- Sn=117.8 Pb=206.4

Ti=48 Zr=89.7 --
N=14.01 P=30.9 As=74.9 Sb=122.1 Bi=207.5

V=51.2 Nb=93.7 Ta=182.2
O=15.96 S=31.98 Se=78 Te=128? --

Cr=52.4 Mo=95.6 W=183.5
-- F=19.1 Cl=35.38 Br=79.75 J=126.5 --

Mn=54.8 Ru=103.5 Os=198.6?
Fe=55.9 Rh=104.1 Ir=196.7

Co = Ni = 
58.6

Pd=106.2 Pt=196.7

Li=7.01 Na=22.99 K=39.04 Rb=85.2 Cs=132.7 --
Ag=107.66 Au=196.2

?Be=9.8 Mg=23.9 Ca=39.9 Sr=87.0 Ba=136.8 --
Zn=64.9 Cd=111.6 Hg=199.8
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characteristics are determined not directly from atoms, but from molecules 
in which the atoms are packed. And therefore became obvious that more 
verifiable facts should be collected before being possible to formulate a 
new generalization, able to replace that ordinary based on the concept of 
the simple elements and atoms.

The Merignac’s research (on the niobium) and those of Roscoe (on 
vanadium) were special moments. Sweeping analogies between vanadium 
and phosphorus on the one hand, and between vanadium and chromium 
on the other hand, which have become so apparent in the investigations 
connected with that element, have induced the possibility of comparison of 
V = 51 with Cr = 52, Nb = 94 with Mo = 96, and Ta = 192 with W = 194; 
on the other hand, P = 31 can be compared with S = 32, As = 75 with 
Se = 79, and Sb = 120 with Te = 125. From these approximations there 
was only a step until the discovering of the periodicity law.

The periodicity law was, therefore, a direct consequence of a package 
of generalities and of the establishment of the factors accumulated until 
the end of the decade 1860–1870. There was a combination of data in 
expressions more or less systematic. In this combination was the secret of 
the importance assessed to the periodicity law; it gave a new position to 
the generalizations, offering an unexpected aid of the chemist researchers, 
which promise to be more productive in the future.

A periodical function became obviously in the elements case, depend-
ing on the atomic mass. The primary concept of the elements masses or of 
the atomic masses belongs to a category that presents the state of a for-
bidden science, because of the fact that there was no mean to analyze and 
dissect such conception. All that was known about the masses dependent 
functions had origin to Galileo and Newton and indicated that this func-
tions increase or decrease once with increasing the mass (as the attraction 
of the celestial bodies).

The numerical expression of the phenomenon was always found as 
proportional with the mass and in any case the increasing mass was not 
been followed by a recurrence of the properties as a periodical law of 
the elements. This was a novelty in the natural phenomena study; even 
if it was not appropriate to the purpose which define the truth about the 
mass concept, it was not indicated that the explanation of such a concept 
to be searched in the atomic masses. Moreover, as long as the masses are 
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not something else than aggregations or additions of the chemical atoms, 
they can be better described as chemical individuals. It is remarked that 
by the way of seeing the “individual” mean a translation of the Greek 
word “atom”; the history had traced a distinguished line between the two 
words, and nowadays the chemical concept of the atoms is nearer to the 
one defined by the Latin “individual,” rather than the Greek one, although 
the word has a special specification unknown to the classics. The periodic 
law had shown that the chemical individuals present a harmonic periodic-
ity of the properties, according to their masses.

If we put on the abscissa the series of the lengths proportional with the 
angles and on the ordered the proportion with the trigonometrically func-
tions, we obtain curves with harmonic character. It seemed at a first sight, 
that once with the increasing of the atomic weight, the elements propeties 
function should vary in the same harmonic way. But in this case, there 
were no such continuing changes like for the curves, because the periods 
do not contain an infinite number of points to form a curve, but only a 
finite number of points. To illustrate this observation one showcases next 
atomic weights:

Ag = 108 Cd = 112 In = 113 Sn = 118 Sb = 120 Te = 125 I = 127

for which a steadily increase is observed, and this growth of them 
is accompanied by a modification of many properties which constitute 
the Periodic Law. Thus, for example, the density of the elements above 
decreases steadily, being respectively while their oxides contain a increas-
ing amount of oxygen as ilustrated in the next series of compounds:

Ag2O Cd2O2 In2O3 Sn2O4 Sb2O5 Te2O6 I2O7

10.5 8.6 7.4 7.2 6.7 6.4 4.9

However, by connecting through a curve on an ordinate axis the sum-
mation of these properties one would involve the rejection of the Dalton 
law, i.e., of the multiple proportions. There is not only the fact that there are 
no intermediate elements between silver (which gives AgCl) and cadmium 
(giving CdCl2), but according to the essence of the periodic law there it 
could not exist any element. In fact, the uniform curve would be inappli-
cable in this case, because it leads to the waiting of some elements with 
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special properties in any point of the curve. Therefore, the periods of the 
elements have a very different character from those which are so simple 
represented by geometers. They attach to each point (from numbers) the 
sudden changes of masses, without a continuing evolution. In these sudden 
changes the destitute of the steps or of the intermediate positions appears 
(in the absence of the intermediate elements between, let’s say, silver and 
cadmium, or aluminum and silicon); we must admit that it is a problem in 
which no direct application of the analysis to the infinite small scale can 
be applied. Therefore, neither the trigonometrically functions proposed by 
Ridberg and Flavitzky, neighter the pendulum oscillations suggested by 
Crookes, or the cubic curves of Haughton, proposed for expressing the 
periodic law, cannot represent the chemical elements periods.

Another attempt was made in 1888, by B.N. Tchitcherin. This author 
has placed the periodicity issue in the first place, but had investigated 
only the alkaline metals. Firstly, he noted the simple relations existent 
between atomic volumes of the all alkaline metals; these relations can be 
expressed by the formula: A(2–0.00535An), where A is the atomic weight, 
and n equals to 8 for lithium and sodium, 4 for potassium, 3 for rubidium 
and 2 for cesium.

If n remained equal to 8, while increasing A, the volume became zero 
at A = 462/3, and reached the maximum at A = 231/3. One noticed the 
close approximation of the minimum number to the difference between 
the atomic weights of the analogous (as Cs-Rb, I-Br) and of the maxi-
mum number of the weight of sodium. For this reason, what could be sure 
until then was that the attempts as the two above, have to be repeated and 
multiplied, because the periodic law clearly shown that the atoms masses 
increase abruptly, step by step, which are clearly connected in some way 
with the Dalton law (of the multiple proportions) and because of the ele-
ments periodicity which found the expression in the transition from RX to 
RX2, RX3, RX4, and so on until the RX8; in the point where the energy of the 
combinatorial forces was consumed, the series start again from the RX to 
RX2, and so on.

Kant said that in the world exist “two things that will not stop to amaze 
us, or to born our admiration: the moral law within ourselves and the 
stellar sky above us.” But when we focus our thoughts on the Nature’s 
elements and the periodic law, we must admit a third topic, namely “the 
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elementary Nature’s individuals who are found everywhere around us.” 
Without them, the stellar sky itself is incomprehensible; in the atoms we 
see at once the peculiar individualities, the infinite multiplication of their 
individualities, and by which they seem free to infer the general harmony 
of the nature.

When we try to explain the origin of the unique matter idea, we easily 
conclude that in the absence of some inductions from the experiments, we 
use the philosophical scientific theories, to reveal a kind of unity in the 
huge diversity of individualities that around us. In classical times, such 
a tendency can be satisfied only by the conceptions about the immaterial 
world. Regarding the material world, our ancestors were content to stick 
to some assumptions and have adopted the idea of unity in a material 
form, because they were not able to evolve the conception of another 
possible unity in order to connect the multifarious relations of the matter. 
Responding to the same legitimate scientific tendency, the natural sci-
ence has found through the Universe a unity plan, a unity force, a unity 
matter and the convincing conclusions of the modern science that have 
convinced anyone to approve such units. But as long as we admit unity 
in many things, we need to explain the individuality and the apparent 
diversity that we cannot rate to follow it everywhere. It was said of the 
olds: “give me a fulcrum strong enough and I’ll move the world.” And 
we must say, “Give any which is individualized and the apparent diversity 
will be easily understood,” otherwise how the unity could result in the 
multitude?

Dr. Pelopidas in 1883, presented a scientific communication about 
the periodicity of the hydrocarbon radicals, highlighting the parallelism 
(which was noted) between the change of the hydrocarbon radicals’ prop-
erties and the elements (which were classified into groups). In 1886, the 
Professor Carnelley had developed an identical parallelism:

I II III IV V VI VII VIII
C6H13 C6H12 C6H11 C6H10 C6H9 C6H8 C6H7 C6H6

Before the periodic law to be formulated, the atomic weights of the 
elements were merely empirical numbers, so that the magnitude of the 
equivalent and the atomicity, or the value in the substitution possessed 
by an atom, could be tested by the critical examination of the determi-
nation methods, but never directly by considering the numerical values 
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themselves; in a few words, we were forced to work in dark, to replace the 
facts, instead of being theirs masters.

The trivalency of yttrium (which is now present in Y2O3 oxide instead 
of YO) was provided by the periodic law and now become very likely that 
Cleve and all the other investigators of the rare metals, not only have 
adopted, but have applied it without any new demonstration to the ele-
ments so imperfect (as the groups of cerite and gadolinite) especially 
since when Hildebrand had determined the specific heat of lanthanum and 
didymium and he had confirmed the expectations suggested by the peri-
odic law.

Berzelius had determined the atomic weight of tellurium as being 128, 
while the periodic law required an atomic weight under iodine, which was 
fixed by Stas to 126.5, which certainly is not higher than 127. Brauner, 
had taken the investigations and had shown that the real atomic weight 
for tellurium is lower than the iodine one, going near to 125. For titanium 
Thorpe’s extensive research had confirmed the atomic weight of Ti = 48, 
indicated by the law and already intuited by Rose, but contradicted by 
analysts of Pierre and other chemists.

The periodic law expectations were confirmed, firstly, by the new 
determinations of the platinum atomic weight (for Seubert, Dittmar and 
M’Arthur), which proved to be near to 196 (taking O = 16, as proposed 
by Marignac, Brauner and others); secondly, Seubert has proved that the 
atomic weight of osmium was really lower than that of platinum, almost 
191. Thirdly, the investigation of Kruss and Thorpe proved that the atomic 
weight of gold overcome the one of platinum, being approximated to 197. 
These atomic weights required corrections; the periodic law had indicated 
as being affected by errors and therefore had proved that the law allows 
some testing means for the experimental results.

The indium indicate that the gradually increasing of the elements 
power to combine with the oxygen is accompanied by a corresponding 
decrease in their power to combine with hydrogen; the periodic law had 
shown that there is an oxidation limit, as well as the elements limit to 
combine with hydrogen. A single atom of an element combines with maxi-
mum four atoms, either hydrogen or oxygen; while CH4 and SiH4 repre-
sent the strongest hydrides, so RuO4 and OsO4 are the strongest oxides. 
Therefore, one came to know the types of oxides, as one came to know 
the types of hydrides. The oxides were obviously following the periodical 
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law subject, both in terms of physical and chemical properties, especially 
if we consider the case of polymerization which was also observed when 
comparing CO2 to SinO2n. To prove this, it was compared the densities with and 
the specific volumes for the oxides of two periods. For an easier analysis, 
the oxides were represented as R2On (Table 1.11).

The size of the atomic weight, the matter essence itself, was a number 
which did not relate with the division state of a simply element, but related 
with the material part which was common to the simple element in all its 
compounds. The atomic weight does not belong to the coal or diamond, 
but to the carbon. The property that Gerhardt and Cannizzaro determined 
as the atomic weight of the elements is based on such a statement and 
on certain assumptions, that for the most objects (especially for the sim-
ple ones, whose heat capacity in the free state was determined) does not 
remain any doubt on the atomic weight (the atomic weights were often 
confused with the equivalents and were determined by various bases and 
often contradictory). This is the reason for which it was chosen the system 
based on the elements atomic weights.

The first attempt made in this regard was the follow: the bodies with 
the lowest atomic weight were selected, and then were arranged in order 
of their atomic weight increasing size. This showed that there is a period 
of the simple elements properties, even in terms of their atomicity, i.e., the 
elements follows one after another, in arithmetic order, successively to the 
atoms sizes. The elements arranged according to the size of the atomic 
weight clearly shown periodic properties:

TABLE 1.11 The Oxides, Their Physical Properties and the Atomic Wights Differences 
(∆) Inside the Compounds, According With Mendeleev (1889)

Compound Density Specific 
volume

Δ Compound Density Specific 
volume

Δ

Na2O 2.6 24 –22 K2O 2.7 35 –55

Mg2O2 3.6 22 -3 Ca2O 3.15 36 –7

Al2O3 4.0 26 +1.3 Sc2O3 3.86 35 0

Si2O4 2.65 45 5.2 Li2O4 4.2 38 +5

P2O5 2.39 59 6.2 V2O5 3.49 52 6.7

S2O6 1.96 82 8.7 Cr2O6 2.74 73 9.5
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1. The elements which are similar in their chemical function have 
either atomic weights which are close (as Pt, Ir, Os) or show a uni-
form increase of the atomic weight (as K, Rb, Cs). In such compari-
sons there were not used the conclusions of Gerhardt, Regnault, 
Cannizzaro and other, who established the real value of the ele-
ments’ atomic weights.

2. The comparison of the elements or their groups according to their 
atomic weight size, determine the so-called atomicity of them and 
by extension, their differences in the chemical nature (a fact clearly 
evident in the group of Li, Be, B, C, N, O, F and repeated in other 
groups too).

3. The simple elements (which are randomly distributed in nature) 
have small atomic weights and all the elements that have small 
atomic weights are characterized by their property specificity. 
They are, therefore, typical elements. Hydrogen, as the lightest ele-
ment, is typical for such purpose.

4. The size of the atomic weight determines the element character, as 
the size of the molecule determines the properties of a complex ele-
ment; when we are studying the compounds, one should consider 
not only the properties and the quantity of elements, not only the 
reaction, but also the atomic weights. For example, the compounds 
like S and Te, Cl, I etc., although present similarities, have clear 
differences as well.

5. We expect to discover many simple elements still unknown, for 
example, those similar to Al and Si, elements with atomic weight 
between 65 and 75.

6. Some analogies of the elements are discovered from the atomic 
weights size. Uranium is presented as analogous to aluminum, 
evidence which is proved when comparing their compounds 
(Mendeleev, 1889).

1.3.5 DISCOVERING NEW ELEMENTS BY PERIODICITY LAW, 
BY MENDELEEV (1869, 1871, 1889)

The atomic-elemental system of Mendeleev leads with systematic 
prediction such that the Periodic Law assures the compactness of the 
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Periodic System itself, through the landmark analysis (Mendeleev, 
1869, 1871, 1889):

An established system is limited by the order of known and unknown 
elements. With the periodic and atomic relations (existent between all 
atoms and the properties of their elements) were observed the possibility 
to not only note the absence of some of them, but even to determine (with 
a high certitude) the properties of the elements still undiscovered; it was 
possible to predict their atomic weight, the density in the free state or as 
oxides, acids, bases, the oxidation degree, and the ability to be reduced 
and to form salts and to describe the metalloorganic properties of the com-
pounds for a given element. It was also possible to describe in detail the 
properties of some compounds of these undiscovered elements.

Among the common elements, the lack of a number of boron and alu-
minum analogs was very striking (being in group III) and was sure that it 
was missing an element of this group immediately after the aluminum. It 
had to be found near, or in the second series, immediately after potassium 
and calcium. Their atomic weights being almost 40, and as in this line is 
following the element of the group IV, titanium, Ti = 50, there results that 
the atomic weight of that missing element would be about 45. As this ele-
ment belongs to an equal (isoelectronic) series, it should have properties 
more basic than the lower elements of the group III (boron or aluminum); 
this means that R203 oxide should be a strong base. An indication of this 
behavior was the titanium oxide, TiO2, with weak acid properties, and with 
many signs to be almost basic. Grounded on these properties, the metal 
oxide should be still weak, as the weak basic properties of the titanium 
dioxide. Compared with the aluminum, this oxide should have a stronger 
basic character and therefore, probably, would not decompose the water, 
and would combine with acids and alkalis with formation of simple salts. 
The ammonia will not dissolve, but maybe the hydrate will be weak dis-
solved in potassium hydroxide; this fact was unlikely because the element 
belonged to an equal series and to a group of elements of whose oxides 
contain a small quantity of oxygen (see Figure 1.3).

There appears the preliminary name of ekaboron, which is derived from 
the fact that it was the first neighboring element after the boron (the first 
element of a new group) and the eka syllable means “the first,” Eb=45.

The ekaboron had to be a metal with the atomic volume of 15, because 
in these elements of the second series (and for all new series) the atomic 
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volume decreases fast, starting from the first group to the next. The potas-
sium volume was about 50, 25 for calcium, for titanium and vanadium 
almost 9, while for chromium, molybdenum and iron almost 7. Therefore, 
the specific gravity of the metal should be close to 3.0, because the atomic 
weight was 45. The metal will not be volatile, because it could hardly 
be discovered by the usual methods of the spectral analysis. It will not 
decompose the water at ordinary temperatures, but at certain tempera-
tures it wills, as also many other metals from that series which form the 
basic oxides. Finally, it will dissolve in acids. Its chloride EbCl3 (maybe 
Eb2Cl6), should be a volatile substance, but with a salt corresponding to 
the basic oxide. The water will act on it like the calcium and magnesium 
chloride, the ekaboron chloride will be hygroscopic and will be able to 
convert the hydrogen chloride without having a character of a hydrochlo-
ride. Since the calcium chloride volume is 49 and the titanium chloride is 
109, the volume of ekaboron chloride should have been close to 78 and 
therefore the specific gravity would probably be 2.0. The ekaboron oxide, 
Eb2O3, should be a non-volatile substance, and probably will not merge. 
Will be insoluble in water, because even the calcium oxide is slightly sol-
uble in water, but it will be probably dissolved in acid. Its specific volume 
will be approximately 39, because in series, the potassium oxide has a 
volume of 35, CaO=18, TiO=20 and CrO8=36. This, by considering that 
we have only an atom of oxygen, the volume falls quickly to the right (in 
Periodic System), so that for potassium = 35, calcium = 18, titanium = 10, 

FIGURE 1.3 Mendeleev’s Periodic Table (Mendeleev, 1869, 1871, 1889)
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chromium = 12 and therefore the volume of ekaboron oxide with an atom 
of oxygen should be about 13, and the Eb2O3 formula would correspond 
to a volume of almost 39, and then anhydrous ekaboron would have a 
specific weight about 3.5. However, because it is a strong enough base, 
this oxide should show a small tendency to form alums, although it will 
give alum-compounds, double salt with potassium sulfate. Finally, the 
ekaboron will not form metalloorganic compounds, because is the first of 
the metals of the new series. Judging by the known data for the elements 
which accompanied cerium, none of them belong to the place designated 
to the ekaboron, so this metal is not a member of the cerium complex 
(Mendeleev, 1869, 1871, 1889).

1.4 STANDARD FORM OF THE PERIODIC TABLE

The modern Periodic Table contains a huge amount of useful information 
for those interested in the structure of atomic or molecular phenomena and 
their combinations. In the eighteenth and nineteenth century, the chem-
istry had progressed a lot and, once with the discovery of many chemi-
cal elements, there appears the necessity of their classification. Resuming 
over the previous sections, the first chemist who proposed a classification 
model for elements was Johann Döbereiner. He formed several groups of 
three elements with similar properties such as the chlorine, the bromine 
and the iodine or the calcium, the strontium, the barium etc. Even though 
Döbereiner tried to extend this model of triads also to the other known ele-
ments, the model proved to be quite limited. The next attempt was made by 
the English chemist John Newlands, who in 1864, shows that the elements 
can be arranged in the increasing order of their atomic mass in octaves. 
This means that, some properties of elements are repeated for every eighth 
element, in a manner similar to the musical scale, which is repeated for 
every eighth tone. Even if this model lead only to a few groups of elements 
with similar properties, it was, generally, considered a success. The cur-
rent form of periodic table has been regularly performed simultaneously 
by two chemists: the German Julius Lothar Meyer and the Russian Dmitri 
Ivanovich Mendeleev, based on the relationship between the atomic weight 
and the physical and chemical properties of elements. Greater credit was 
given to support the periodic table developed by Mendeleev, because 
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he made the vanguard hypothesis for using the table towards the possi-
bility of prediction of the existence and the properties of elements still 
unknown. For example, in 1872 when Mendeleev published his first table, 
the elements gallium, scandium, germanium were unknown, but he cor-
rectly predicted the existence and the properties of these elements of the 
unoccupied seats, based on the properties of other elements in neighboring 
groups. The chemical elements were arranged in the Mendeleev periodic 
table (Figure 3.1) based on the periodicity law, according to: “physical and 
chemical properties of elements and their combinations are periodic func-
tions of their atomic weight” (Aldea et al., 2000).

The periodic system contained only 62 elements known at that time. 
The unknown elements arranged on the spots predicted by the peridicity 
law, were named using eka or dvi prefixes, for example Ekabe (Sc), eka-
aluminum (Ga), eka silicon (Ge), eka manganese (Tc), dvimangan (Re). 
By using his table, Mendeleev corrected some atomic weights. For exam-
ple, the initial weight of Indium was 76, based on the assumption that the 
indum oxide had the formula InO. This atomic weight places the Indium, 
which has metallic properties, among the nonmetals. Mendeleev assumed 
that the atomic weight is probably incorrect and suggests as a real for-
mula of indium oxide the In2O3. Based on this formula, the indium has an 
atomic weight of approximately 113, as can be seen also in the following 
Table 1.12 with physical and chemical properties of the elements from the 
current periodic table of Aldea et al. (2000).

The confirmation of Mendeleev periodic table was made by G. Moseley, 
around 1913, which, by using the X-Ray spectra, established the serial 
number Z of the elements and therefore their right position in periodic 
table. He showed that the elements properties are periodic functions of 
atomic number Z and also proved that that most elements are composed of 
isotopes. Based on the discovery of new elements and the deepening the 
atom studies, Niels Bohr completed the short form of the periodic system 
developed by D. Mendeleev, with the rare-gases group (noted by zero) and 
the other newly discovered elements. This system consists in seven hori-
zontal rows, called periods, each containing 2, 8, 8, 18, 18, 32 cells and 
9 vertical columns, called groups (I to VIII plus the zero-th group). For 
the first seven groups, each contains two subgroups: a principal (A) and 
a secondary (B) one. The eighth group took a special place in the system: 
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TABLE 1.12 Physical and Chemical Properties of the Periodic Table Elements (Aldea et al., 2000)

Z Name Symbol Weight Atomic 
radius (pm)

Melting 
Point (K)

Boiling 
Point (K)

Atomic volume 
(cm3/mol)

Density 
(g/cm3)

1. Hydrogen H 1.008 37 14 20 14.2 0.07
2. Helium He 4.003 128 1.0 4.1 27.2 0.15
3. Lithium Li 6.941 156 454 1615 13.1 0.53
4. Beryllium Be 9.012 113 1551 2745 4.87 1.848
5. Boron B 10.81 97 2573 4273 4.62 2.34
6. Carbon C 12.011 92 4100 5100 5.34 2.25
7. Nitrogen N 14.007 55 63 77.4 17.3 0.88
8. Oxygen O 15.999 60 54.8 90.2 14.0 1.15
9. Fluorine F 18.998 71 59.5 85 17.1 1.51
10. Neon Ne 20.179 65 24.5 27.1 16.7 1.20
11. Sodium Na 22.990 186 370.9 1156 23.7 0.971
12. Magnesium Mg 24.305 160 922 1380 14.1 1.738
13. Aluminium Al 26.982 143 933 2792 10.0 2.702
14. Silicon Si 28.086 117 1683 3538 12.1 2.33
15. Phosphorus P 30.974 110 317 553 16.5 1.82
16. Sulfur S 32.066 104 386 718 15.5 2.07
17. Chlorine Cl 35.453 99 172.2 138.3 22.7 1.56
18. Argon Ar 39.948 174 83.8 87.3 28.6 1.38
19. Potassium K 39.098 231 337 1033 45.4 0.862
20. Calcium Ca 40.078 197 1112 1713 25.8 1.55
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Z Name Symbol Weight Atomic 
radius (pm)

Melting 
Point (K)

Boiling 
Point (K)

Atomic volume 
(cm3/mol)

Density 
(g/cm3)

21. Scandium Sc 44.956 161 1814 3103 15.0 2.99
22. Titanium Ti 47.88 145 1941 3560 10.6 4.54
23. Vanadium V 50.942 131 2173 3723 8.28 5.8
24. Chromium Cr 51.996 125 2130 2938 7.2 7.19
25. Manganese Mn 54.938 137 1518 2334 7.4 7.43
26. Iron Fe 55.847 125 1808 3135 7.09 7.87
27. Cobalt Co 58.933 125 1768 3200 6.6 8.90
28. Nickel Ni 58.693 124 1726 3186 6.59 8.90
29. Copper Cu 63.546 128 1356.4 2840 7.3 8.92
30. Zinc Zn 65.39 133 693 1179 9.2 7.14
31. Gallium Ga 69.723 122 302.9 2477 11.8 5.91
32. Germanium Ge 72.61 123 1210.4 3103 13.6 5.32
33. Arsenic As 74.922 125 1090 886 13.1 5.72
34. Selenium Se 78.96 116 490 958.1 16.4 4.79
35. Bromine Br 79.904 114 265.9 331.9 25.6 3.12
36. Krypton Kr 83.80 110 116.6 121 38.9 2.6
37. Rubidium Rb 85.468 243 312.2 961 55.8 1.53
38. Strontium Sr 87.62 215 1041 1653 33.7 2.60
39. Yttrium Y 88.906 180 1795 3610 19.9 4.47
40. Zirconium Zr 91.22 161 2125 4650 14.0 6.49

TABLE 1.12 Continued
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Z Name Symbol Weight Atomic 
radius (pm)

Melting 
Point (K)

Boiling 
Point (K)

Atomic volume 
(cm3/mol)

Density 
(g/cm3)

41. Niobium Nb 92.906 147 2741 5015 10.8 8.4
42. Molybdenum Mo 95.94 136 2883 4885 9.39 10.2
43. Technetium Tc 97.907 135 2445 5150 8.6 11.5
44. Ruthenium Ru 101.07 132 2607 4423 8.15 12.3
45. Rhodium Rh 102.906 134 2239 3970 8.29 12.4
46. Palladium Pd 106.42 138 1825 3213 8.85 12.0
47. Silver Ag 107.868 144 1235 2436 10.3 10.5
48. Cadmium Cd 112.411 149 594.1 1038.6 13.0 8.65
49. Indium In 114.18 163 429.3 2353 15.7 7.31
50. Tin Sn 118.71 140 505 2875 16.3 7.28
51. Antimony Sb 121.757 182 903.6 1860 18.2 6.68
52. Tellurium Te 127.60 137 723 1263 20.5 6.24
53. Iodine I 126.905 138 386.7 457 25.7 4.93
54. Xenon Xe 131.29 218 161 165 37.3 2.94
55. Caesium Cs 132.905 265 301.6 951.6 71.0 1.873
56. Barium Ba 137.327 210 998 1913 39.2 3.51
57. Lanthanum La 138.906 187 1193 3743 20.7 6.7
58. Cerium Ce 140.115 183 1068 3741 21.1 6.77
59. Praseodymium Pr 140.908 183 1208 3790 20.8 6.77
60. Neodymium Nd 144.24 181 1297 3347 20.6 7.00

TABLE 1.12 Continued
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Z Name Symbol Weight Atomic 
radius (pm)

Melting 
Point (K)

Boiling 
Point (K)

Atomic volume 
(cm3/mol)

Density 
(g/cm3)

61. Promethium Pm 144.913 183 1315 3300 22.3 6.475
62. Samarium Sm 150.36 180 1345 2067 20.0 7.54
63. Europium Eu 151.96 204 1095 1800 29.0 5.259
64. Gadolinium Gd 157.25 179 1586 3546 19.9 7.90
65. Terbium Tb 158.925 178 1629 3500 19.3 8.27
66. Dysprosium Dy 162.50 177 1682 2840 19.0 8.54
67. Holmium Ho 164.930 177 1747 2973 18.75 8.80
68. Erbium Er 167.26 176 1802 3136 18.45 9.05
69. Thulium Tm 168.934 175 1818 2220 18.1 9.33
70. Ytterbium Yb 173.04 194 1097 1467 24.8 6.98
71. Lutetium Lu 174.967 174 1936 3668 17.8 9.84
72. Hafnium Hf 178.49 154 2495 4875 13.4 13.2
73. Tantalum Ta 180.948 143 3269 5700 10.9 16.6
74. Tungsten W 183.85 137 3683 5933 9.5 19.40
75. Rhenium Re 186.207 138 3453 5900 8.85 21.03
76. Osmium Os 190.23 134 3327 5300 8.49 22.40
77. Iridium Ir 192.22 136 2637 4403 8.6 22.42
78. Platinum Pt 195.08 139 2045 4100 9.1 21.45
79. Gold Au 196.967 144 1337.6 3081 10.4 19.29
80. Mercury Hg 200.59 147 234 630 14.8 13.55

TABLE 1.12 Continued
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TABLE 1.12 Continued

Z Name Symbol Weight Atomic 
radius (pm)

Melting 
Point (K)

Boiling 
Point (K)

Atomic volume 
(cm3/mol)

Density 
(g/cm3)

81. Tallium Tl 204.383 170 576.7 1730 17.2 11.86
82. Lead Pb 207.2 175 601 2013 18.3 11.34
83. Bismuth Bi 208.980 155 544.5 1833 21.4 9.80
84. Polonium Po 208.982 167 527 1235 22.2 9.40
85. Astatine At 209.987 - 575 610 - 11.30
86. Radon Rn 222.018 132 202 211 50.5 4.40
87. Francium Fr 223.020 270 300 950 45.2 -
88. Radium Ra 226.025 223 973 1413 22.6 5.0
89. Actinium Ac 227.028 203 1323 4273 19.8 10.06
90. Thorium Th 232.038 181 2023 4123 15.0 11.70
91. Protactinium Pa 231.036 161 1873 4300 12.6 15.37
92. Uranium U 238.029 138 1405 4091 11.6 19.05
93. Neptunium Np 237.048 150 913 4193 12.3 20.05
94. Plutonium Pu 244.064 151 914 3505 17.8 19.8
95. Americium Am 243.061 182 1267 2880 18.3 13.7
96. Curium Cu 247.070 174 1613 - 18.6 13.5
97. Berkelium Bk 247.070 - 1259 - 16.6 13.3
98. Californium Cf 251.080 186 1173 - - 15.1
99. Einsteinium Es 252.083 186 - - - -
100. Fermium Fm 257.095 - - - - -
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Z Name Symbol Weight Atomic 
radius (pm)

Melting 
Point (K)

Boiling 
Point (K)

Atomic volume 
(cm3/mol)

Density 
(g/cm3)

101. Mendeleevium Md 258.09 - - - - -
102. Nobelium No 259.101 - - - - -
103. Lawrencium Lr 262.110 - - - - -
104. Rutherfordium Rf 261.109 - - - - -
105. Dubnium Db 262.114 - - - - -
106. Seaborgium Sg 263.119 - - - - -
107. Bohrium Bh 262.123 - - - - -
108. Hassium Hs 265.131 - - - - -
109. Meitnerium Mt 266.138 - - - - -
110. Ununnilium Uun 269 - - - - -
111. Roentgenium Rg 272 - - - - -
112. Ununbium Uub 277 - - - - -
116. Ununhexium Uuh - - - - - -
118. Ununoctium Uuo - - - - - -

*Note that for element Z=111 (A=272), the current name is Roentgenium replacing the temporary IUPAC’s Unununium assingnement (and as such accepted 
by IUPAC on November 1, 2004) (Wiki, 2013c).

TABLE 1.12 Continued



Free ebooks ==>   www.Ebook777.com

Historical Highlights on the Periodicity of the Chemical Elements 57

it contains 9 elements grouped three by three. The elements with the serial 
numbers between 58 and 71, called lanthanides, were located in the same 
cell of the periodic system with lanthanum (Z = 57), and the elements with 
the serial numbers between 90 and 103 (actinides), were in the actinium 
(Z = 89) box. Subsequently, A. Werner has developed the long-form of 
the periodic system, where the secondary groups elements were arranged 
separately and inserted between the elements from groups IIA and III A, as 
a series of ten elements, while the lanthanide and the actinides were listed 
in the bottom of the periodic table, in two horizontal rows, 14 items each 
(Aldea et al., 2000).

The properties of the elements which depend on the atomic nucleus, 
present a linear variation, meaning that they are nonperiodic. These non-
periodic properties are:

• the atomic number, which increase from Z=1 to Z=118;
• the atomic mass, which increases from 1.008 to 266;
• X-Ray spectra, where the square root of the radiation frequency is a 

linear function of the number Z.

The properties which depend on the external electronic shell structure 
vary periodically with the Z number. The most important periodic proper-
ties are: the atomic radius, the atomic volume, the ionic radius, the ionic 
volume, the melting point, the boiling point, the ionization energy, the 
electron affinity, the electronegativity, the valence, the acid-base character 
etc. (Aldea et al., 2000).

The remaining of this Volume will widely discuss about the elec-
tronegativity and related chemical periodic indices, as a starting point 
for (in principle) all other periodic properties of elements from the 
Periodic Table.

1.5 CONCLUSION

The periodic law is not of the physical but the chemical kind, although not 
often properly realized. It resides in the fact of attributing four quantum 
numbers (principal, orbital, magnetic, and spin) to each electron in arrang-
ing them in the so-called configuration by the aufbau principle according 
which the Periodic Table is constructed. Certainly, such quantum labeling 
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obviously departs the physical principle according which electrons are 
indistinguishable particles—therefore, they cannot be identified and clas-
sified as 1s, 2s, 2p, 3s, 3p, 3d, etc. This is a Chemical Idea! This is not 
a Physical principle! This is a Chemical Principle! Perhaps the biggest 
one! Nobody can explain it in terms of physical rationale of elementary 
particle properties for many-electronic atoms likewise the atomic partial 
charge in molecule seems to be the rule not the exception in chemical 
bonding! However, the aufbau principle has proved itself as a reasonable 
reality (when assumed as a working tool) in explaining the vast variety 
of chemical compounds and combination through the resulting concepts 
of valence, frontier orbitals, electronegativity, chemical hardness. In this 
respect, Chemistry appears well equipped with special Principles and con-
cepts that work despite their apparent refutation by the physical principles 
(Putz, 2011).

Periodic law belongs indeed to Chemistry alone although also being 
contributed to by remarkable physicists, for example, Bohr, Pauli, Curie, 
Langmuir, Hartree, Fock, Hoyle, Fowler, Bethe, just to name a few.

Criteria such as atomic weight, the [principal (n) + orbital (l) quan-
tum numbers] or Madelung rule, and the simple atomic number (Z) order-
ing allow Scerri to recognize among three variants of regarding chemical 
elements: as neutral elements by Weinhold and Bent (2007), as bonded 
atoms by Schwarz (2007) or as macroscopic elements characterized by 
atomic number Z by Mendeleev (1891), Paneth (1962), and Scerri (2004a, 
2004b, 2007), respectively. It so happens that the last idea is embraced 
by the present author as well, while being recently justified throughout 
a quantitative structure-property relationship (QSPR) analysis showing 
that among physical + chemical properties and chemical concepts, those 
closely related with Chemistry (such are the electronegativity and chemi-
cal hardness) better resemble the prediction of the atomic number in the 
Periodic System (see next chapters of the present volume).

The idea of attributing Z alone (at least for some level of chemical 
comprehension) was shown by Scerri to be fruitful in deciding upon 
the best form of the Periodic Table. In this respect, although he pre-
viously proposed the option for the left-step long form, as based on 
Madelung rule, he recently has revived the atomic triads idea, i.e., 
among thee elements placed one in top of other in neighborhood 
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periods (therefore, somehow having n+l rule included), the middle one 
has its atomic number expressed as semi-sum of the extreme ones. 
This allows him to reclaim, for instance the element He at the top of 
the inert gases group since the sequence of Z numbers: 2, 10, 18 reso-
nates with triadic rule; the same with H at the top of the halogen group 
since the sequence of Z numbers: 1, 9, 17 also accords with the triadic 
rule, Figure 1.4. The same holds, for instance for the transitional metal 
triads Ru (44), Os (76), Hs (108), or from the alkali metals triad Li(3), 
Na(11), K(19)—as holds exactly for about 50% of all triads of Periodic 
Table (Scerri, 2009; Putz, 2011).

Nevertheless, the other way around, it is worth recognizing that Z 
alone is not enough for providing further insight into the atomic chemical 
properties such as atomic radii, electronegativity and chemical hardness, 
when further account of the principal, orbital and core shielding effects 
count as well (see next chapters of the present volume).

However, the crusade in discovering Chemical Principles comple-
menting those of Physics in governing the chemical structure and reac-
tivity is continuously open as the synthesis of newly designed chemicals 
targeting optimization in chemical medicine, technology, and envi-
ronment demand. Equally, validating the Periodic Law by different 
approaches, i.e., by computing reliable atomic radii, electronegativity 
or chemical hardness—eventually within the celebrated DFT, see next 
chapters of the present volume, would serve to better identify the right 
concepts and tools that are then be used to fulfill chemical intuition by 
quantifying the molecular chemical realm (Hefferlin & Kuhlman, 1980; 
Hefferlin, 1989).

FIGURE 1.4 Scerri’s long-form proposal for the Periodic Table, while emphasizing on 
some triads of elements with the middle one having its atomic number as the semi-sum of 
the external ones (Scerri, 2009; Putz, 2011).
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ABSTRACT

The alternative quantum mechanical description of total energy given by 
path integrals specialized to Feynman-Kleinert formalism, while recover-
ing the Bohr quantification of Hydrogen atom in a great extend, yet within 
a more general framework in which the stability issue is solved by exist-
ing quantum fluctuation, here explicitly modeled by periodic paths and 
Matsubara frequencies; both ground and exited states are treated in quan-
tum statistical perspective.

2.1 INTRODUCTION

Being about to recently celebrating the International Year of Chemistry (2011) 
worth rethinking about what Chemistry indeed added as plus-value to the 
humankind knowledge, and what was not accomplished by other disciplines, 
Physics for instance—often seen (and rightly in general or quantitative sense) 
as the foreground bath of natural laws, if not the depositary of all Natural 
laws (and eventually the philosophy) as we earn from the Great Brit Newton. 
However, worth noting that in the times after the Middle Age recrudescence 
against any natural laws that were presumably against the theological doctrine 
of “believing without researching” the Chemistry was in fact the single dis-
cipline emerged as independent field of knowledge. This happened perhaps 
because it was regarded as containing enough mystery such that the crude 
minds will be never corrupted from seeing the Nature through the veil of ini-
tiation. In fact, the Alchemy, was the only pseudo-science present in those 
days, to which Newton itself, among others preeminent figures, were adhered 
in addition of being proud to be considered as belonging to. Just remember his 
vision about light as being composed from elementary particles “sympathetic 
one each other,” i.e., manifesting a sort of chemistry among them, or describ-
ing the body interactions by engaged “sympathies” among corps, what were 
duly later recognized as corresponding nonetheless than to the “second quan-
tization” of Physics (fields to elementary/quantable corpuscles) (Putz, 2011).

Therefore, one may say that Chemistry is a special way to see the phys-
ical phenomena, there where the mass or number of particles does not 
count in macroscopic way. And this is the first big leap of Chemistry: it 
seems to deal with macroscopic things when in fact it deals with observable 
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quantities—that is different approach of reality; this, because observabil-
ity is not a given fact but an emerging effect whose cause lays in micro-
scopic reality of quantum fields and particles.

Moreover, Chemistry deals also with the non-observable quantities that 
Physics ignore somehow: take the radius of atoms—the reality is obvious 
as any substance may be seen as atoms-in-molecule compounds, yet there 
is no clear frontier of individual atoms neither in isolated or in interacted 
state; beside this there is no quantum mechanical operator of atomic radii—
it eventually resulted through a variational process of the total energy.

Then, take the electronic charge—physically (in macroscopic or observ-
able sense) indivisible below the elementary charge carry—however, there is 
rarely integer amounts of elementary charges are attributed to certain atoms 
in a molecule, according with quantum mechanical calculation at any level of 
approximation for a given many-electronic many-nuclear bonded structure.

However, having these physic al concepts particularly defined in 
Chemistry, allows therefore asserting against the first impression reductionism 
of physical laws to those of Chemistry. Beyond these there are few but aston-
ishing important laws of nature that seems to especially belong to Chemistry 
despite their apparent refutation by ordinary physical thinking. One of these, 
perhaps the greatest one, is in the following discussed (Putz, 2011).

Recently, the crucial problem regarding whether chemical phenomena are 
reducible to physical ones has had an increasingly strong impact on the cur-
rent course of conceptual and theoretical chemistry. For instance, the fact that 
elements arrange themselves in atomic number (Z) triads in approximately 
50% of the periodic system seems to escape custom ordering quantifications 
(see also the Conclusion of the precedent  Chapter) (Scerri, 2007; Putz, 2011). 
The same applies to the following: the fascinating golden ratio (τ) limit for the 
periodicity of nuclei beyond any physical first-principle constants, which pro-
vides specific periodic laws for the chemical realm (see the Chapter 4 of the 
present volume) (Boeyens, 2005, 2008, 2011; Boeyens & Levendis, 2008); 
the fact that atoms have no definite atomic radii in the sense of a quantum 
operator, and even the Aufbau principle, which, although chemically work-
able, seems to violate the Pauli Exclusion Principle (Kaplan, 2002); at the 
molecular level, the well-celebrated reaction coordinate, which, although for-
mally defined in the projective energy space, does not constitute a variable 
to drive optimization in the course of chemical reactions, appearing merely 
as a consequence of such reactions (Scerri, 2004); the problem of atoms in 
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molecules (Bader, 1990), i.e., how much of the free atoms enter molecules 
and how much independency the atoms preserve in bonding; and chemical 
bonding itself, which ultimately appears to be reinterpreted as a special case of 
bosonic condensation with the aid of author’s bondons—the quantum bosons 
of chemical bonding, which, without being elementary, imbue chemical com-
pounds with a specific reality, see Volume III of the present five-volume book 
(Putz, 2016a).

However, in all cases the stability of atomic systems make possible all 
molecular and upwards structural constitution of matter; there is therefore 
essentially to be properly understand on quantum bases, this way also bet-
ter distinguishing between the physical and chemical nature of the atom 
itself: paradoxically (or not) this will be firstly achieved through the cel-
ebrated Heisenberg principle by means of involving or not the “magic” 
measure of matter by means of the golden ratio first, then imbalance, then 
driving periodicity (see next chapters of the present volume). Beside the 
golden ratio, the path integral formalism, see Volume I of the present five-
volume book (Putz, 2016b), will be here reloaded and extended under the 
Feynman-Kleinert formalism allowing for properly describing the atomic 
stability by combining the periodic paths with wave packets inside of atom 
so that having the quantum fluctuation at the origin of the atomic stability 
itself.

2.2 ATOMIC VALENCE STABILITY BY GOLDEN RATIO 
IMBALANCE

Atomic stability and periodicity remain major issues in the structural 
theories of matter; fortunately, they both have been largely solved by 
wave-particle (W/P) complementarily quantum behavior; phenomeno-
logically, such relationship can be expressed as “WAVE ⊗ PARTICLE = 
constant,” while it may be quantized (by Planck’s constant h) in the light 
of Heisenberg principle as (Putz, 2010, 2012)

  (2.1)

Remarkably, when fixing the particle’s observable property, say O, while 
letting wave information to vary, say ΔO, Eq. (2.1) takes the workable form

  (2.2)
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having as the preeminent realization the Bohr-de Broglie formulation, 
leading with the first rationalization of the atomic periodicity (Pauling & 
Wilson, 1985): for circular orbits, the lowest ones in each atomic shells—
including the valence ones, one has ΔO = Δr = 2πr, with r the orbital radii 
thereof, while O = p is the fixed particle’s momentum on that orbit; there-
fore, when combined into Eq. (2.2) they provide the celebrated Bohr-de 
Broglie relationship rp = nħ solving the atomic spectra of Hydrogen atom 
in principal quantum numbers (n).

However, when about the atomic chemical reactivity a similar analysis 
may be provided in terms of the number of electrons to atomic number 
ratio (N/Z): one may fix the observable (“particle”) character of the reac-
tive atomic system by the ratio itself

  (2.3)

while modeling its evolving (“wave”) character by the natural variation of the 
previous ratio in terms of exchanged electrons respecting the neutral state:

  (2.4)

When combining Eqs. (2.3) and (2.4) into Eq. (2.2) on the lowest quan-
tized state (X. nO = 1, the “ground state” of atomic reactivity that is the 
atom in its valence state so to speak) and within atomic units’ formulation 
(i.e., by putting h = 1, since the actual reactivity quantification involves 
only numbers with no dimension), one has the so-called Heisenberg imbal-
ance equation for valence atoms

  (2.5)

that can be rewritten as

  (2.6)

Equation (2.6) has the elementary acceptable solution

  (2.7)
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which establishes, the direct “chemical” connection between the number 
of electrons and the atomic charge by means of the golden ratio

  (2.8)

generalizing the “physical” connection between nuclear (cosmic) synthe-
sis at high pressure and atomic stability in the gas phase (Z = N); one has 
therefore the actual physical-to-chemical electronic charge—atomic num-
ber relationships (Putz, 2012)

  (2.9)

Worth remarking the results of type (2.7) and (2.9), here based on chem-
ical reactivity specialization of Heisenberg type equations (2.1) and/or 
(2.2), were previously obtained at the level of neutron-protonic imbal-
ance, inside the atomic nuclei, based on well-founded empirical observa-
tions (Boeyens & Levendis, 2008). The present golden ratio appearance 
is ultimately sustained also by the deviation from the N=Z condition 
for so-called “quark atoms” (as another way in considering the atoms 
in a quantum valence state), earlier identified as true matter’s enti-
ties responsible for matter’s reactivity at the atomic level (Lackner & 
Zweig, 1983).

Therefore, the atomic structure branching (2.9) can be regarded as the 
present golden ratio extension to valence atom and as such employed; 
actually, its consequences regarding the characterization of the quantum 
valence states of atoms within the Bohmian quantum potential are the 
main aims of the present endeavor and will be discussed next.

2.3 RELOADING QUANTUM PATH INTEGRAL FORMALISM 
FOR CHEMISTRY

Since the recent most celebrated quantum theory of Chemistry—the 
Density Functional Theory (DFT) is mainly based on density function-
als, which relay on their turn on the many-body densities, the seek for 
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electronic density both as computational (here understood as analytical) 
and conceptual assignments stays as a crucial endeavor in quantum chem-
istry comparable with the landmark theoretical predictions of spectra in 
the early age of quantum physics (Putz, 2009).

Yet, for achieving such challenging task the complex mathematical-
informatics and mathematical-physics seems to be at the foremost back-
ground for computational and conceptual Density Functional Chemistry, 
respectively. The present review was dedicated to the later goal that is to 
present the analytical framework in which the many-electronic systems 
may be described by the associate densities at various levels of conceptu-
alization, approximation, and applications.

As such, through presenting the basics of density matrix theory, the 
precursor of DFT, the path integral concept appears as the natural solu-
tion for expressing the time-space electronic density. Indeed, the Feynman 
path integral formulation has been revealed as the natural generalization 
of the Schrödinger equation, being in close relation with the propagators 
and Green function of a given quantum system, either at equilibrium or 
coupled with a temperature bath or particle environment.

Nevertheless, the density matrix—path integral description allows the 
general formulation for the many-electronic density through the so-called 
canonical density algorithm; it prescribes that the system is firstly solved 
for the single electron evolution under the concerned potential for which 
the time-space density matrix is analytically formulated, in an evolution 
manner, as the propagator (xb, tb; xa, ta); then, the partition function is com-
puted by closing the paths such that the spatially end-points to coincide,

  (2.10)

this step assures nevertheless that all possible energetic or eigen-config-
urations are accounted, thus including all the virtual single-eigen-states 
to be occupied when the systems will be eventually filled with electrons; 
moreover, it allows for the final writing of the N-electronic density formu-
lation simply as

  (2.11)
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Remarkably, the partition function involvement in this density algo-
rithm was widely and most extensive used by the Feynman-Kleinert 
approach which was proved to furnish meaningful approximations 
either for the ground state (as was the case for atomic Hydrogen and 
the Bohr’s orbitalic proofed stability) as well for the higher tempera-
ture or excited or the valence states (that resembles the semiclassical 
approximation).

Regarding the realization forms of path integral approaches of a 
quantum problem/system there were individuated three major pic-
tures: the quantum mechanical (QM), the quantum statistical (QS) 
and the Fokker-Planck (FP) ones; the passage among them as well as 
their inter-conversion and equivalence being realized through the time 
transformations presented in the Table 2.1. It, nevertheless, leads both 
with philosophical and practical consequences: epistemologically, there 
seems that the time itself may suffer transformations being of quantum 
order (~ħ) and correlated with inverse of the thermic energy (~β), while 
passing from quantum to statistical description of Nature; as well, the 
mass in equilibrium states plays the role in open systems of inverse of 
diffusion (naturally, since presenting inertia) but also with a quantum 
manifestly nature, while the ordinary (QM or QS) harmonic oscilla-
tions’ frequency becomes friction in FP description of non-equilibrium 
systems.

TABLE 2.1 The Parametric Correspondence Between the Quantum Mechanics 
(QM), Quantum Statistics (QS) and Fokker-Planck (FP) Path Integral Representations; 
m Stays for the Particle’s Mass, ω for the Harmonic Frequency (of Paths’ Fluctuation, 
Eventually), β for the Inverse of the Thermic Energy kBT, D for the Diffusion Constant, 
γ for the Friction Constant, while ta & tb are the End-Point Times for the Observed 
Evolution (Putz, 2009)

QM QS FP

m M

ω ω γ

ħβ tb − ta 
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Moreover, practically, such inter-conversion table allows for imme-
diately transferring of one result obtained within a quantum picture into 
another without the need of entirely problem reformulation. This procedure 
was largely considered and applied throughout the present review; it nev-
ertheless leads with another epistemological conclusion, namely that the 
QM oscillatory description is equivalently converted into the hyperbolic 
function for statistical and Markovian (or FP) frameworks, which further 
means the quantum modeling by the Gaussian wave-packet and Green 
functions. At this point, worth being mentioned the explicit proof for the 
de Broglie equivalence with the Gaussian wave function by the smear-
ing out procedure of the fluctuation of the closed paths with the effective 
partition function approach; even more, such equivalence is justified by 
the very roots of quantum theory since the Born normalization of the de 
Broglie wave-packet is finely satisfied by the Gaussian form of its Fourier 
coefficients (amplitude), see Volume I of the present five-volume book.

From the chemically point of view, the valence states are those situated in 
the “chemical zone”-and they are the main concern for the chemical reactivity 
by employing the frontier or the outer electrons; consequently, the semiclas-
sical approximation that models the excited states was expressly presented 
either as an extension of the quantum Feynman path integral or as a special-
ization of the Feynman-Kleinert formalism for higher temperature treatment 
of quantum systems (see Section 2.5). However, due to the correspondences 
of Table 2.1 one may systematically characterize the semiclassical (or quan-
tum chemical) approaches as one of the limiting situations (Putz, 2009):

• ħ → 0: the quantum semiclassical limit;
• ħβ → 0: the QS short-time limit;
• T → ∞: the high-temperature limit;
• ω → 0: the flat potential, or the quasi-homogeneous (Thomas-

Fermi) limit; yet, this may be easier visualized by noting the dis-
crete-to-quasi continuum transformation of eigen-levels intervals in 
the exited zones of quantum systems (atoms, molecules), i.e., where 
the approximation ωħβ = ωħ/(kBT) << 1 holds; moreover, this limit 
nicely overlaps with the “free harmonic approximation” used in this 
work, when the interplay between the free and harmonic motion 
helped in elucidating and solving (by integrating out) the quantum 
fluctuations along the classical paths;
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• N → ∞ or Z → ∞: the bosonic limit due to the scaled equivalence 
T ~ N1/3 or T ~ Z1/3 when the system is thermally expanded, being it 
related with the Thomas-Fermi theory, in Chapter 5 of the present 
volume exposed.

Yet, the use of path integral formalism for electronic density prescrip-
tion presents several advantages: assures the inner QM description of 
the system by parameterized paths; averages the quantum fluctuations; 
behaves as the propagator for time-space evolution of quantum informa-
tion; resembles Schrödinger equation; allows QS description of the system 
through partition function computing. In this framework, four levels of 
path integral formalism were presented: the Feynman quantum mechani-
cal, the semiclassical, the Feynman-Kleinert effective classical, and the FP 
non-equilibrium (see Chapter 5 of the present volume) ones. In each case 
the density matrix or/and the canonical density are rigorously defined and 
presented. The practical specializations for quantum free and harmonic 
motions, for statistical high and low temperature limits, the smearing jus-
tification for the Bohr’s quantum stability postulate with the paradigmatic 
Hydrogen atomic excursion, along the quantum chemical calculation 
of semiclassical electronegativity and hardness, of chemical action and 
Mulliken electronegativity, as well as by the Markovian generalizations of 
Becke-Edgecombe electronic focalization functions—all advocate for the 
reliability of assuming path integral formalism of quantum mechanics as a 
versatile one, suited for analytically and/or computationally modeling of a 
variety of fundamental physical and chemical reactivity concepts charac-
terizing the (density driving) many-electronic systems.

2.4 PERIODIC PATH INTEGRALS

2.4.1 SURVEY ON MATSUBARA FREQUENCIES AND THE 
QUANTUM PERIODIC PATHS

Since the actual path picture uses the periodic paths, they will be seen as 
the Fourier series (Feynman & Hibbs, 19665; Feynman, 1972; Schulman, 
1981; Wiegel, 1986; Kleinert, 2004; Putz, 2009)

  (2.12)
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in terms of the so-called Matsubara frequencies ωm that are explicitly found 
through imposing on Eq. (2.12) the actual statistical closed path constraint

  (2.13)

resulting in the equality

  (2.14)

with the solution

  (2.15)

which certifies the quantization of paths (2.12).
Moreover, under the condition the quantum paths (2.12) are real,

  (2.16)

its equivalent expanded form with the conjugated path

  (2.17)

yields for the coefficients of the periodical paths the relationship:

  (2.18)

With this, the quantified form of periodic path frequencies, Eq. (2.15), 
allows rewriting of the paths (2.12) under a separated form into constant 
and complex conjugated oscillating contributions

  (2.19)

with the 0th terms viewed more than the “zero-oscillator” or free motion 
path but the thermal averaged path over entire quantum paths (2.12), 
see Volume I/Chapter 4 of this five-volume book:

  (2.20)
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thus resulting in the Feynman centroid formula.
However, beside revealing the Feynman variable integration of the 

classical partition function

  (2.21)

as being of path integral (average) nature, the result enlighten on the actual 
periodic path decomposition (2.19) as furnishing another level for parame-
terize quantum paths, which goes beyond characterizing them as quantum 
fluctuations around classical motion; they are here constructed as periodic 
oscillations (back and forth—see the complex conjugation, in analogy 
with conjugated plane waves traveling in opposite directions) around the 
averaged path value (interpreted as thermic average, or, more plastic, as 
centroid of the quantum fluctuations themselves).

The symbol  in Eq. (2.21) denotes the fact that the path inte-
gral is performed over all paths that fulfill the periodicity x(0) = x(ħβ) of 
Eq. (2.13). Is now clear that we prefer to deal with such integrals because 
their completeness respecting with all possible (statistically closed) paths 
between two quantum events. Therefore, just for this path parameteriza-
tion perspective the present level seems involving quite complex quantum 
phenomenology; this will be further enriched in the sections to follow.

2.4.2 MATSUBARA HARMONIC PARTITION FUNCTION

With the quantum path decomposition (2.19) the Feynman path integral 
measure in Eq. (2.21) factorizes accordingly (Putz, 2009)

  (2.22)

with the integration constants C0 and Cm to be determined from identify-
ing the known partition function of the harmonic oscillator, see Volume I/ 
Chapter 4 of this five-volume work, as the result for the path integral rep-
resentation of the same partition function with the measures (2.22) and 
paths (2.19):
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  (2.23)

Firstly, let’s separately compute the kinetic and harmonic quantum path 
terms appearing under the integral (2.23). For kinetic term we succes-
sively get:

  (2.24)
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while the harmonic contribution casts as:

  (2.25)

and together combined in the partition function (2.23):

×

×
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  (2.26)

Within the frequency choice

  (2.27)

the partition function (2.26) further resumes as:

  (2.28)

with the newly introduced function:

  (2.29)

like a series of Matsubara frequencies. There is clear that in order the 
Matsubara partition function (2.28) be solved the product series (2.29) has 
to be evaluated. This is done through three more transformations, namely 
by rewriting it as

  (2.30)

with

  (2.31)

×
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followed by its derivative:

  (2.32)

that is recognized as being related with he Riemann generalized series

  (2.33)

Once calculated, the Riemann series (2.33) is replaced in Eq. (2.32) which, 
at its turn, is employed in the integral manner

  (2.34)

for finally providing the searched function (2.29).
The calculus of the generalized Riemann series (2.33) will be in next 

section exposed.

2.4.3 THE GENERALIZED RIEMANN’ SERIES

Computation of the generalized Riemann series (2.33) requires few inter-
mediate steps (Putz, 2009):

• Writing it under the form

  (2.35)

in terms of the extended series:

  (2.36)

• Applying the Poisson (comb function) formula for series, see Volume 
I/Appendix A.1.2 of this five-volume work (Putz, 2016b), on series 
(2.36)
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  (2.37)

• Computing the integral under the sum of Eq. (2.37) by complex 
integration, according with the contours of integration identified in 
Figure 2.1, around the poles q = ±iα, throughout applying the resi-
dues’ theorem:

  (2.38)

while summing the convergent cases:

  (2.39)

arisen from the observation that

  (2.40)

Note that the outline (I) is considered as being the one circulated 
with trigonometric direction, while for the (II) outline the anti-trigo-
nometric sense resulted, being is equivalent with the (–) sign in front 
of its integral, which, for instance explicitly gives:

FIGURE 2.1 The integration outlines around the poles q = ±iα.
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  (2.41)

while the other contour integration leads with similar result.
• Combining the integrations’ result sin the expression (2.37) while 

attributing to each contour integration result the series summing 
range in accordance with the constraints resulted in Eq. (2.39):

  (2.42)

• With evaluation (2.42) for the series (2.36) the Riemann series (2.35) 
results as:

  (2.43)

• The check with the usual Riemann series by means of turning the 
harmonic to free motion picture, as already done within path integral 
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evaluations based on free motion- harmonic motion interplay; In fact 
having to evaluate the limit

  (2.44)

it is practically (with mathematically sufficiency) applied only to the 
hyperbolic cotangent function

  (2.45)

since resulting in the identity:

  (2.46)

from where springs out the Riemann series custom limit:

  (2.47)

We have now all prerequisites to compute the Matsubara harmonic 
partition function (2.28) aiming to find out the Matsubara normaliza-
tion of periodic path integrals. This will be addressed in the sequel.

2.4.4 PERIODIC PATH INTEGRAL MEASURE

Turning to the Matsubara harmonic partition function algorithm (2.28)–
(2.34) one successively has (Putz, 2009):

• Computing the function (2.32) where inserting the above Riemann 
generalized series (2.43):

  (2.48)

• Compute the function (2.31) by the aid of Eq. (2.34) rule through 
considering the variable change z = ħβΩ/2 in Eq. (2.48):
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  (2.49)

• Computing the function (2.29) with the help of Eqs. (2.30) and (2.49):

  (2.50)

• Releasing the Matsubara partition function for the harmonic motion 
by replacing function (2.50) into expression (2.28):

  (2.51)

• Comparing the form (2.51) with the consecrated result for harmonic 
oscilators’ partition function (see Volume I/Chapter 4 of the present 
five-volume book) one remains with the condition:

  (2.52)

• Choosing for the Feynman centroid integral the normalization factor 
that regains the inverse of the thermal length (280):

  (2.53)

• Plugging expression (2.53) in Eq. (2.52) there result the constant

  (2.54)

and then through the relation (2.27) also the Matsubara constants
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  (2.55)

• Once determined the constants (2.53) and (2.55) are replaced in 
Eq. (2.22) to yield the normalized measure of the periodic integrals 
in terms of the Matsubara quantum frequencies (2.15)

  (2.56)

Note that the measure given in Eq. (2.56) is rather universal for peri-
odic paths, while the involvement of the harmonic oscillator was only 
a tool (and always an inspiring exercise) for determining it through the 
complete quantum and statistical solution at hand for harmonic motion 
and its versatile properties respecting the perturbation or limiting the 
free motion as well as for modeling the quantum fluctuations (by quan-
tifying the displacements away from classical equilibrium or path).

2.5 FEYNMAN-KLEINERT VARIATIONAL FORMALISM

2.5.1 FEYNMAN-KLEINERT PARTITION FUNCTION

Being equipped with the periodic path integral technique we can present 
one of the most efficient ways for approximate the effective-classical par-
tition function (2.21); it firstly unfolds for a general external potential like 
the exact integral (Putz, 2009):

  (2.57)×
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Since the exact solution for expression (2.57) is hard to formulate for an 
unspecified potential form, it may be eventually reformulated in a workable 
way by involving another partition function, the so-called Feynman-Kleinert 
(FK) partition function ZFK, and its special average recipe, respectively as

  (2.58)

and

  (2.59)

In Eqs. (2.58) and (2.59) the Feynman-Kleinert partition function takes the 
general form

  (2.60)

wile the working ansatz looks like

  (2.61)

thus being constructed as such, unlike the general partition function (2.57), 
to explicitly account for the path fluctuations around the Feynman centroid 
(2.20), the only integration variable in effective-partition function (2.21), 
through the term (x(τ) – x0)

2, driven harmonically by the frequency Ω2(x0), 
with a role in optimizing the quantum fluctuations in order state equilib-
rium be achieved, while the supplementary of Feynman-Kleinert pertur-
bation function LFK(x0) assures the global optimization for the action, and 

×
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implicitly for the Feynman-Kleinert partition function, so approaching the 
best the exact partition function (2.57) or its associate total ground state 
energy of the system given by the free energy:

  (2.62)

In fact, the Feynman-Kleinert action (2.61) is being to be involved in two-
fold optimization algorithm in providing the best approximation of the 
partition function (2.57). This will favor a close analogy with the double 
search for electronic density, in density functional theory (DFT), as will 
be latter discussed.

Yet, the Feynman-Kleinert partition function is to be unfolded within 
the actual periodic path integral representation, with the help of Eqs. (2.28) 
and (2.50)

  (2.63)

while being formally expressed under the effective-classical form (2.21)

  (2.64)

it provides the Feynman-Kleinert potential (Feynman & Kleinert, 1986)

  (2.65)

×
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to be optimized in respect with its harmonic frequency (equilibrium 
optimization) and for perturbation (ground state optimization) in what 
follows.

2.5.2 FEYNMAN-KLEINERT OPTIMUM POTENTIAL

The optimization of the Feynman-Kleinert partition function (2.64) is per-
formed employing the Jensen-Peierls inequality (Putz, 2009),

  (2.66)

whose the phenomenological proof is given in the Figure 2.2, on the parti-
tion function relationship (2.58) leading to the lower bounded partition 
function

  (2.67)

or, by calling the Eq. (2.62), to the higher bounded free energy

  (2.68)

Yet, the last inequality, rewritten with the help of Euclidian actions for gen-
eral partition function and the Feynman-Kleinert specialization, Eqs. (2.57) 
and (319), respectively, one notes the disappearing of the kinetic (free 
motion) terms, while the resulting expression

FIGURE 2.2 Graphical illustration of the Jensen-Peierls averages’ inequality (Putz, 2009).
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  (2.69)

provides the searched variational architecture:

  (2.70)

where all involved terms combines external, perturbation and quantum 
fluctuation influences.

Being the variational problem formulated it remains to individually 
compute the terms appearing in Feynman-Kleinert average (2.70), by 
using the definition (2.59) with the action (2.61).

For the external potential average we have in the first instance the peri-
odic path integral representation, with the help of Eqs. (2.28) and (2.50)

×
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  (2.71)

where the Fourier k-(wave vector) representation was implemented 
for external potential so that the quantum path to explicitly appear in 
evaluation, followed by quadratic completion of paths in the view of 
harmonic-like integration of type (2.26) with the result (2.50); never-
theless, in course of these operations the new quantity was introduced, 
namely

  (2.72)

which can be immediately analytically evaluated since recognized as 
directly related with generalized Riemann series (2.43) with the form 
(Feynman & Kleinert, 1986)

×

×
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  (2.73)

Expression (2.71) can be even more simplified when solving out the 
k-integral by considering the back Fourier transformation for the potential 
and then proceeding with the quadratic completion toward the Poisson 
standard integration

  (2.74)

The potential (2.74) is known as the smeared out potential and has a major 
role in explaining the quantum stabilization of matter, as will be largely 
discussed in the next section. For the moment it is regarded jus as the inte-
gral transformation of the original applied potential through convoluted 

×

×
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with a Gaussian packet with the width a2(x0) accounting for the existing 
quantum fluctuation in the system.

Nevertheless, with Eq. (2.74) back in Eq. (2.71) we have for the 
Feynman-Kleinert average of external potential the result (Feynman & 
Kleinert, 1986):

  (2.75)

Next, for the rest of the averaged terms in Eq. (2.70) things are consid-
erably more easy since or each of them we have firstly to compute their 
smeared out version (2.74), with the respective results

  (2.76)

  (2.77)

When replaced in average form (2.75) the forms (2.76) and (2.77) cumu-
late with the smeared out potential (2.74) in the final Feynman-Kleinert 
average equation (2.70), now featuring the form:

  (2.78)

from where the first stage of variational algorithm is fulfilled by the obvi-
ous choice

×

×

×
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  (2.79)

With Eq. (2.79) the Feynman-Kleinert potential (2.65) now displays as 
(Feynman & Kleinert, 1986)

  (2.80)

There remains only to finally optimizing the explicit potential (2.80) for 
the harmonic (trial) frequency assuring therefore the equilibrium of the 
gained lowest approximation of the ground state for the concerned system. 
This is simply achieved through the chain derivative:

  (2.81)

seeing that also the fluctuation width (2.73) depends on harmonic frequency. 
Moreover, due to the derivative equivalence  
the first in Eq. (2.81) is arranged to observe its vanishing nature when 
recalling the fluctuation width (2.73),

  (2.82)

This way, Eq. (2.81) remains only the simple condition

  (2.83)

that provides from Eq. (2.80) the optimum (stabilization) frequency for 
quantum fluctuation

  (2.84)
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Nevertheless, through observing the huge role both the smeared out poten-
tial (2.74) and the fluctuation width (2.73) play in deriving the approxi-
mated equilibrium ground state they deserve be further analyzed and 
commented in relation with matter stability.

2.5.3 QUANTUM SMEARED EFFECTS AND THE STABILITY OF 
MATTER

The intriguing role the smeared potential in special and the smearing 
effect in general play in optimization of the total energy and parti-
tion function of a quantum system opens the possibility analyzing the 
“smearing” phenomenon of the quantum fluctuation in a more funda-
mental way (Putz, 2009).

1. Firstly, there was noted that the smearing potential (2.74) appears as a 
Gaussian convolution of the applied potential, although modeling the evo-
lution of a wave-packet under that potential; in other terms, there appears 
the fundamental question whether the Gaussian and wave function “ker-
nels” behave in similar way throughout the smearing effect of quantum 
fluctuations; analytically, one likes to see whether there holds the smear-
ing average equality:

  (2.85)

In order to check Eq. (2.85) one separately computes each of its side sepa-
rately by the aid of k-form of (2.74) and gets successively the smearing 
average for wave-function:
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  (2.86)

and respectively for the Gaussian packet:

  (2.87)

Now for closely compare the expressions (2.86) and (2.87) the most ele-
gant way is to make once more recourse to the smearing procedure, this 
time referring both to the entire paths and Feynman centroid; to this end, 
the previous result (2.76) is here used explicitly as:

  (2.88)

It allows the additional similar relationships:

  (2.89)

×
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Based on the fact that the first two terms of Eq. (2.89) are equal due to the 
symmetry of the smearing average formula (2.74) at the interchange x ↔ x0, 
while the mixed term of Eq. (2.88) expansion vanishes, , in 
any path representation. With these, practically we can reconsider Eqs. (2.86) 
and (243b) by performing the formal equivalences

  (2.90)

yielding with:

  (2.91)

  (2.92)

Since the difference between these expressions is numerically proportion-
ally with the factor

  (2.93)

they can be considered as identical in quantum smearing effects and 
Eq. (2.85) as valid.

Yet, the quantum identity between the plane-wave and Gaussian 
packet has profound quantum implication, while revealing for instance 
the de Broglie—Born identity in Gaussian normalization of the de 
Broglie moving wave-packet. It may express as well the observational 
Gaussian character of the wave-function evolution in Hilbert space. 
Finally, and very important, it leads with explanation of the Bohr first 
postulate, i.e., is able to explain the stationary wave on orbits under sin-
gular (Coulombic) potential thus explaining the matter stabilization on 
rigorous quantum base, rather than to admit it by the power of a postu-
late. This is to be in next proofed (Feynman & Kleinert, 1986; Kleinert, 
2004; Putz, 2009).



Quantum Assessment for Atomic Stability 95

2. Let’s consider a quantum system evolving under the influence of the 
Yukawa potential, as a generalization of the Coulomb interaction, avail-
able also on the sub-nuclear world:

  (2.94)

which goes to the celebrated Hydrogen Coulomb central potential in the 
limit:

  (2.95)

Now, we like to investigate the smeared version of the Yukawa potential 
(2.94). In 3D towards radial formulation the general definition (2.74) 
specializes as:

  (2.96)

In the last expression one can recognize the squared integration variable, 
of the same nature as fluctuation width, see Eq. (2.90) with r = x – x0, 
so that the passage to integration upon the variable a2 seems natural, yet 
meaning that the path dependent terms becomes smeared respecting the 
fluctuations, and the integration (lower) limit changes accordingly:

  (2.97)

In this new integral form only one smeared term is truly of the compulsory 
form (2.86), namely

  (2.98)
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where also the proofed identity (2.85) was considered upon it. Yet, the 
form (2.98) may be further approximated by the application of the Jensen-
Peierls equality limit of the Eq. (2.66), to yield

  (2.99)

when the smeared rules (2.89) was counted as well. The other similar term 
in Eq. (2.97) is however evaluated by the approximated inverse identity:

  (2.100)

however, based on the unconnected version of the second order Wick 
cumulant

  (2.101)

With expressions (2.99) and (2.100) back into the smeared Yukawa poten-
tial (2.97) it becomes:

  (2.102)

Now, through considering the variable exchange under the integral:

  (2.103)

there result the following transformations:

  (2.104)

so that the smeared potential (2.102) finally cast as:

  (2.105)
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which has no longer singularity at origin, since the integral in Eq. (2.105) 
is behaving like its integration interval for the limit r0 → 0, which gives:

  (2.106)

Now, there is clear that under the Coulombic limit (2.95) the resulting 
atomic (say for Hydrogen case) smeared effect leaves it with the form:

  (2.107)

while its value on origin is of finite value:

  (2.108)

thus assuring (and explaining) why the atomic electron(s) do not fall onto 
nucleus.

Therefore, the smearing procedure plays a kind of renormalization role 
in transforming singular potential in finite interactions by means of quan-
tum fluctuation effects. Such picture strongly advocates for the power-
ful path integral formalism in general and of that of Feynman-Kleinert in 
special since explicitly accounting for the fluctuation width in optimizing 
the quantum equilibrium states. Nevertheless, worth particularizing the 
Feynman-Kleinert formalism to the ground and excited states cases for 
better capture its realization and limits.

2.5.4 GROUND STATE (β→∞, T→0K) CASE

The basic ground state conditions in terms of thermodynamic factor (β) or 
the temperature (T),

  (2.109)
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aims to bring the Feynman-Kleinert formalism, through its working poten-
tial (2.80), to the variational ground state as usually provided by the con-
secrated quantum variational principle. For this purpose it will be firstly 
specialized within the general limit (2.109) and then tested for the para-
digmatic Hydrogen ground state case for investigating upon the accuracy 
of the formalism itself (Putz, 2009).

As such, the components of the Feynman-Kleinert potential (2.80) 
have the ground state limits:

  
(2.110)

which recognizes the ground state of harmonic motion of trial fluctua-
tions, while the ground state of the fluctuation width (2.73) reads as

  (2.111)

from where also the trial fluctuations frequency springs as:

  (2.112)

Through considering the relations (2.111) and (112) yields for the work-
ing general effective-classical approximation potential (2.80) the general 
ground state limit:
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  (2.113)

with the ground state smeared out potential remaining for individuation 
for a given problem.

Very interesting, the expression (2.113) entirely corresponds to the 
smeared out effect applied on the ordinary quantum Hamiltonian:

  (2.114)

as one can immediately check out though applying the general smearing 
averaging definition (2.74) on it:

  (2.115)

The identity between expressions (2.113) and (2.115) leaves with the impor-
tant idea that the smearing operation produces in fact the average of quantum 
fluctuation for the ground state equilibrium. For the Coulomb interaction, 
say on the Hydrogen (H), either expression produces the working form

  (2.116)



100 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

where the 3D version of the kinetic term of (2.115) was here considered 
aside the smearing out potential in the origin (2.108) to produce the form 
ready for ordinary minimization respecting the fluctuation width:

  (2.117)

The solution of the Eq. (2.117) with the form (2.116) produces the opti-
mum width for quantum fluctuations:

  (2.118)

which, in terms of the standard first Bohr radius

  (2.119)

reads as

  (2.120)

thus producing only a 6% error in predicting the localization for the stabi-
lization of electronic ground state orbit closer to the nucleus respecting the 
exact Bohr-Schrödinger solution. However, for predicted approximated 
ground state energy error is a bit higher due to the energy dependency

  (2.121)

this way laying about 16% higher than the exact ground state of Hydrogen 
atom.

Nevertheless, besides the approximated character of the formalism, 
the Feynman-Kleinert approach adapts very well to the singular potential, 
having the advantage of being compatible with a wide class of electronic 
potentials in atoms and molecules; moreover, it can be particularized to the 
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ground state in the same degree it accounts for higher temperature cases, 
the other extreme of thermodynamic limit—see the next section, spanning 
this way I principle the entire range of statistical systems at equilibrium. 
Such “universal” QS picture of equilibrium is hard to found in the quan-
tum theory, at the same level of elegance, analyticity and complex ideas 
(Dirac, 1944; Duru & Kleinert, 1979, 1982; Blinder, 1993; Kleinert, 1996).

2.5.5 EXCITED STATE (β→0, T→∞) CASE: WIGNER EXPANSION

As before the components of the Feynman-Kleinert potential (2.80) are to 
be now evaluated in the limit

  (2.122)

The analytical terms are computed through reducing them as such to con-
tain the hyperbolic functions and then applying the approximations of type 
(2.45). With this recipe we firstly evaluate for the fluctuation width the 
expansion of the term (Putz, 2009):

  (2.123)

contribution to the fluctuation width higher temperature approximation

  (2.124)

while observing the limitation to the first order in β expansion.
The same limitation applies also for the harmonic fluctuation term

  (2.125)

that collects all first order in β expansion from the associate McLaurin 
expansion, so up to the second order truncation:

  (2.126)
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with the components:

  (2.127)

  (2.128)

  (2.129)

where, in last expression, the hyperbolic cosecant was approximated, in 
the spirit of Eq. (2.45), with the form:

  (2.130)

With the partial limits (2.127)–(2.129) one constructs the approximation 
of term (2.125) by replacing them in the expansion (2.126) so becoming:

  (2.131)

helping on its turn in the harmonic approximation

  (2.132)

being thus of the same β-order as the limit (2.124) of the fluctuation width.
The remaining term for approximating in higher temperature limit is 

the smeared potential (2.74); this will be done by considered the change of 
variable in the way that

  (2.133)
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allowing for the successively formulation of it within the so-called Wigner 
expansion:

  (2.134)

Expression (2.134) was obtained due to the small fluctuation width at 
higher temperatures, see the limit (2.124); it features, nevertheless, the 
small perturbation in terms of fluctuation width around the applied poten-
tial “centered” on Feynman centroid, therefore behaving as a sort of 
semi-classical expansion. Indeed, recalling the trial fluctuation frequency 
optimal definition (2.84) it specializes in the high temperature limit poten-
tial (2.134) to the working expression:

  (2.135)

Finally, by plugging the optimum frequency (2.135) into the limit (2.132), 
and together with the limits (2.124) and (2.134), back in Feynman-Kleinert 
potential (2.80) it acquires the high temperature form:

  (2.136)

which is nothing than the semiclassical potential appearing in the second 
order partition function (2.64), thus providing the identical Feynman-
Kleinert partition function:

  (2.137)



104 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

From such identity one there is re-affirmed that important conceptual 
achievement according which the Feynman centroid (2.20) corresponds 
in periodic path approach with the end-point coordinate average (2.19) 
in semiclassical expansion. Moreover, there was inferred that the 
higher temperature limit of the Feynman-Kleinert periodic path integral 
approach regains the semiclassical expansion of the non periodic paths 
of a quantum particle (which becomes nevertheless periodic at higher 
temperatures due to higher oscillation about the equilibrium while pos-
sessing not sufficient kinetic energy to break that equilibrium by travel-
ing too far away).

We are now fully convinced that Feynman-Kleinert path integral for-
mulation works fine either at low and higher temperature limits, while 
recovering both the (Hydrogen) ground state and the semiclassical expan-
sion with high fidelity, respectively. There nevertheless remains to stress 
on its further connection with the electronic density and consequently with 
the DFT towards the quantum chemical properties’ computation. These 
issues will be in addressed next.

2.6 CONCLUSION

Overall, there seems the chemical atom may be viewed as the set of 
properties describing its quantum structure, say (shielding principal + 
orbital quantum + atomic numbers), so acquainting for both inner 
(shielding + valence) and global characterization of the many-body 
system, while for the chemical molecule one may consider the (soft-
ness + electronegativity + chemical hardness density functional the-
ory) space for describing bonding and reactivity, again accounting for 
local (frontier) and global chemical behavior of atoms-in-molecules 
(Putz, 2008). The problem of the chemical elemental definition, as all 
pure things, probably has no definite (genuine, i.e., from first prin-
ciples) formulation, being let for the chemical history and philosophy 
for deciding and properly advising—yet it may happened to be one day 
accepting that the chemical element is a purely chemical philosophi-
cal concept, belonging to the Plato’s world of ideas, true in Nature 
but inaccessible in practice; it will be nevertheless a big philosophical 
concept coming from Chemistry side, whatsoever, arguing this way 
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against any kind of physical-to-chemical reductionism. Anyway, the 
chemical law of periodicity seems to refer more to the chemical atoms 
rather than to the elements counterpart—and this should suffice for 
further conceptualizing and interpreting of the vast chemical manifes-
tation of Nature. Other specific chemical laws (that somehow departs 
from physical laws and sometimes complement them) such are those of 
reactivity will be reviewed in the Volume III of the present five-volume 
book set.
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ABSTRACT

The semiclassical path integral approach is undertaken to develop new defi-
nitions and atomic scales of electronegativity and chemical hardness. The 
considered quantum probability amplitude up to the fourth order expansion 
provides intrinsic electronegativity and chemical hardness analytical expres-
sions in terms of principal quantum number of the concerned valence shell 
and of the effective atomic charge including screening effects. The present 
electronegativity scale strikes on different order of magnitudes down groups 
of Periodic Table still satisfying the main required acceptability criteria 
respecting the finite difference based scale. The actual chemical hardness 
scale improves the trend across periods of Periodic System avoiding the usual 
irregularities within the old-fashioned energetic picture. The current quest 
introduces the electronegativity of an element as the power with which the 
frontier electrons are attracted to the center of the atom being a stability mea-
sure of the atomic system as a whole. However, both electronegativity and 
chemical hardness are analyzed for their quantum nature in Fock spaces of 
electronic occupancies, while maintaining their dichotomy in observability.

3.1 INTRODUCTION

From the birthday of the modern chemistry, i.e., since Boyle had used for 
the first time a coherent atomic theory in science in his 1661 famous book 
The Skeptical Chymist, the fundamental principles and concepts of matter 
structure were constantly shared by the physics and chemistry. However, 
the divorce of chemistry from physics would have to come with many 
occasions by means of classical chemical concepts, e.g., valence, chemi-
cal bond, and electronegativity. The “mystery” by which the atoms are 
kept together and still preserving their intimate properties was searched by 
great minds, from Newton to Lewis, being the key furnished only with the 
advent of quantum theory. Within this new paradigm of matter there is the 
feeling that the physics and chemistry are united under the actual common 
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view “that the whole chemistry is a huge manifestation of quantum phe-
nomena” (Ballhausen, 1979).

Nevertheless, despite almost all the concepts of chemistry have been 
reviewed according with quantum principles, the electronegativity notion 
still resists both as a proper qualitative meaning and a suitable quantifica-
tion scheme. The Pauling inspired 1932 insight according with the chemi-
cal reactivity and bonding can be qualitatively measured through bond 
energy difference leads with the statement that a third dimension of the 
Periodic Table (Allen, 1989) has to be introduced as “the power of an atom 
in a molecule to attract electrons to it” so introducing the modern concept 
of electronegativity (EN or χ) (Pauling, 1932). Unfortunately, this is an in 
situ definition and experimentally searches for this “power” evidence had 
remained unclear over nearly 60 years. On the other way, the observed 
striking dependence on electronegativity of the superconducting transition 
temperature of the nano-materials (Askamani & Mahjula, 1989; Ichikawa, 
1989) emphasizes on the importance in having a clear quantum picture of 
the intrinsic atomic electronegativity concept.

However, due to the fact that the principles of the quantum mechanics do 
not suggest any operator whose eigen-value to be electronegativity, years after 
Pauling many definitions and interpretations of electronegativity have been 
formulated (Mulliken, 1934; Gordy, 1946; Iczkowski & Margrave, 1961; 
Hinze & Jaffe, 1962; Klopman, 1965; Parr et al., 1978; Bartolotti et al., 1980; 
Parr & Bartolotti, 1983; Sen & Jørgensen, 1987; Sanderson, 1988). One of 
most preeminent was given by Mulliken in 1934 as the average of the ioniza-
tion potential (IP) and electron affinity (EA) for the valence state of an atom 
(Mulliken, 1934). This empirical spectroscopic definition dominated chem-
istry almost half century until its quantitative counterpart was introduced by 
the works of Parr (Parr et al., 1978; Bartolotti et al., 1980; Parr & Bartolotti, 
1983), as the minus chemical potential of a multi-electronic system. The link 
between these two definitions is acquired if the finite difference approximation 
is performed on the ground state energy, EN, around the referential integer total 
number of electrons N0 (Parr, 1985; Parr & Yang, 1989; Kohn et al., 1996):

  (3.1)

Yet, the problem with the equivalent EN forms in Eq. (3.1) refers to the 
mixed potential conditions that they imply. As such, since the EN definition 
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in left side of the chain equations (3.1) involves ground state energy in a 
non-zero constant potential V(r) it assumes almost vertical values of the 
energies when electrons are changed with environment. On contrary, at the 
right extreme of Eq. (3.1) the so-called finite-difference EN corresponds 
to the valence state and is thus characterized by the almost adiabatic case 
V(r) = 0, as no further electrons are attached to the system.

The compromise between these two limits was recently approached 
by appealing to the systematic energetic expansions respecting charge and 
potential variations within density functional softness theory, see Chapter 4, 
and Garza and Robles (1993). Still, because the electronegativity—unlike IP 
or EA—is not a direct measurable quantity of an isolated atom worth quest-
ing for another structural quantum mechanically way of introducing EN.

In this respect, here we assume EN as the convolution of the imaginary 
time conditional probability (r, τ|0, 0) with the valence shell potential V(r) 
(Putz, 2007),

  (3.2)

so representing the power of entire atom (nucleus + core + valence shell) 
to attract electrons of the outer shell (fixed by radius r) to its center (r = 0). 
This way, the current EN definition may in both qualitatively and quan-
titatively manners to account for the whole stability of the atom with its 
electronic and nuclear subsystems.

Worth noting, that the imaginary time in Eq. (3.2) formally comes out 
from the analytic continuation procedure known in the path integral theory 
as the Wick rotation (Kleinert, 1995). It is based on equivalencies between 
the quantum amplitudes exp(−iHt/ħ) and exp(−βH) of quantum-mechanics 
and quantum-statistics representation of the quantum theory, respectively. 
For this reason, in practical applications the working time in Eq. (3.2) has 
to be implemented as real one, i.e., taking the component of the imaginary 
axis, τ = Im(it), since τ = it = ħβ form above correspondence.

Having a viable EN quantum formulation, its natural companion named 
chemical hardness, η, can be immediately introduced (Parr & Pearson, 1983)

  (3.3)

with a major role in establishing the main chemical principles of reactivity: 
the hard-and-soft-acids-and-bases (HSAB) and the maximum hardness (MH), 
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Volume III of the present five-volume set and Refs. (Robles & Bartolotti, 
1984; Gazquez & Ortiz, 1984; Sen & Mingos, 1993; Pearson, 1997).

Therefore, finding the analytically expression of the conditional prob-
ability EN from definition (3.2) stands as the main goal of the present 
chapter. It is accomplished by the semiclassical expansion up to the fourth 
order of the probability amplitude (r, τ|0, 0) to provide the proper relation 
with the intrinsic quantum characteristics of the atom.

The issue of quantum observability of electronegativity and chemical 
hardness are firstly treated such that to distinguishing among the possible 
occupancies they circumvent for a given quantum state under a parabolic 
Hamiltonian.

Then, the associated atomic electronegativity and chemical hardness 
scales will be computed under general path integral quantum statistic frame-
work and their periodic characteristics discussed respecting the general 
guidelines of the acceptability criteria and the finite-difference counterparts.

3.2 ON QUANTUM NATURE OF ELECTRONEGATIVITY AND 
CHEMICAL HARDNESS

One starts by considering the fermionic Fock space built on the creation 
and annihilation particle operators (Putz, 2009a)

  (3.4)

  (3.5)

so that the vacuum and uni-particle sectors complete the entire particle 
projection space:

  (3.6)

thus fulfilling the dot product rules

  (3.7)

  (3.8)
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and the operatorial actions,

  (3.9)

  (3.10)

They also allow the equivalent density normalization relationships:

  (3.11)

for unperturbed state |ψ0〉 with associated eigen-energy E0 for a given 
valence system throughout the conventional eigen-equation

  (3.12)

in an atom or molecule.
In these conditions, the chemical processes through electronic 

exchanges (releasing by ionization or accepting through affinity) are mod-
eled by the associate ionization and affinity through second quantized 
wave-functions (Putz, 2009a)

  (3.13)

  (3.14)

by means of the perturbation factor λ; they will help calculating the per-
turbed energy

  (3.15)
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and electronic density

  (3.16)

However, when electronegativity field of the system-environment (bath) 
complex is acting on this valence state it has to be calculated throughout 
the perturbation factor λ as

  (3.17)

while from the chemical hardness definition one has (Putz, 2010)

  (3.18)

when employing the chain derivation rule

  (3.19)

Starting with computing the perturbed occupancy, while using the above 
rules, we firstly get

  (3.20)

  (3.21)

  (3.22)
and then for the valence density (Putz, 2009a)
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  (3.23)

yielding the needed expressions

  (3.24)

  (3.25)

Similarly, since the eigen-equation of the non-perturbed valence state by 
means of its energy is accommodated with the creation-annihilation quan-
tum rules:

  (3.26)

  (3.27)

while the term

  (3.28)

is set to zero based on the usual second quantization form of the Hamiltonian 
(Surján, 1989),

  (3.29)
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Note that Eq. (3.29) through its one and two particle terms (with the corre-
sponding integrals hpq and gpqts over the p, q, t, and s orbitals) will produce 
the zero giving quantum operation

  (3.30)

one has for the average energy (Putz, 2009)

  (3.31)
It leaves the needed terms

  (3.32)

  (3.33)

Now, for electronegativity definition (3.17) we have the result (Putz, 2009a)

  (3.34)

while for the chemical hardness (3.18) the limits are inferred (Putz, 2010)

  (3.35)
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This way, it is obvious that at the conceptual (quantum fundamental) level 
one obtained that (Putz, 2011):

• electronegativity is revealed as a quantum (chemical potential) 
observable, i.e., electronegativity is spanned between the pure elec-
tronic attraction and either electronic attraction or release characters 
for the states described by the upper and lower branches of (3.34), 
respectively; note that albeit the electronegativity can have the value 
of the electronic energy this has to be consider for the global sys-
tem’s full occupancy density, since the second quantization approach 
specific to many body-systems, and not iteratively for atoms build-
ing molecule for which would appear that the more atoms, the more 
electronegative the system is.

• chemical hardness is not a quantum observable, having neither a non-
zero nor a definite value for any electronic density realization or limit, 
respectively. However, the result (3.35) does not exclude “real” even 
as “hidden” or dispersed values of chemical hardness, as it is often 
associated with open states of chemical bonding for the fractional 
occupied states—the first upper branch of Eq. (3.35), or with not defi-
nite in eigen-value sense of the empty or fully occupied states that may 
equally be fully engaged or inert respecting chemical bonding; note 
that although seems a controversial result the chemical hardness as the 
general second derivative of the total energy in Eq. (3.3)—as it was 
considered as well in this section, and not as the finite difference 2C 
scheme where it acquires the clear meaning of energetic gap between 
frontier LUMO and HOMO orbitals—see Eq. (3.3), has indeed little 
observational meaning: this was revealed also by scarce fulfillment of 
HSAB principle for a series of simple molecules considered in aque-
ous solvent environment, see Volume III of the present five-volume 
work, as well as by earlier gas-phase works of Drago (Drago & Kabler, 
1972; Pearson, 1972; Drago et al., 1987); another argument may be 
found also in the parallelism between chemical hardness and aroma-
ticity, see above, that indicates that the chemical hardness has virtually 
the same observable character as aromaticity—a concept that is still in 
debate respecting its experimental counterpart or indexing because of 
its inherently relative scale—a behavior affirmed by Katritzky et al. as 
a “multidimensional characteristic” (Katritzky et al., 1998; Cyrański 
et al., 2002; Schleyer, 2005); on the other side, the “metallic” behav-
ior of chemical hardness for the fractional states on the top branch of 
Eq. (3.35) clearly indicates that the electrons of the system can freely 
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move under the electronegativity influence of Eq. (3.34), i.e., the sys-
tem is not in the phase of second order adjustments of the total energy, 
thus the chemical hardness role is absent on this electronic density 
range or occupancy.

Overall, it follows that there are two different kinds of quantum man-
ifestations (and the corresponding indices) to characterize the chemical 
structure in balance between accepting or engaging electrons in boding.

3.3 SEMICLASSICAL ANALYTICS OF QUANTUM EVOLUTION 
AMPLITUDE

3.3.1 PATH INTEGRAL SEMICLASSICAL EXPANSION

Semiclassical derivation of the evolution amplitude employs some of 
the previously Feynman path integral ideas refined due to the works of 
Kleinert and collaborators (Feynman & Hibbs, 1965; Kleinert, 2004; 
Dachen et al., 1974; Grosche, 1993; Manning & Ezra, 1994). They can be 
synthesized as (Putz, 2009b):

• The real time dependency is said to be (Wick) “rotated” into the 
imaginary time,

  (3.36)

and it is detailed as:

  (3.37)

• The quantum paths of Eq. (2.19) are re-parameterized as

  (3.38)

where the classical path of Eq. (2.19) is replaced by the fixed (non 
time-dependent) average:

  (3.39)

while the fluctuation path η(τ) remains to carry the whole path 
integral information, while being changed at the end of integration 
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frontier from previously Dirichlet boundary conditions (2.13) to the 
actual different endpoint values:

  (3.40)

  (3.41)

in terms of the length of the “traveled” space:

  (3.42)

In these conditions the quantum statistical path integral representation 
of quantum propagator, see Eq. (2.10) with Eq. (2.21), and Volume I/
Chapter 4 of the present five-volume set, and takes the form

  (3.43)

since we immediately noted the transformations

  (3.44)

`  (3.45)

  (3.46)

based on the above Eqs. (3.38)–(3.42) parameterization.
There should be pointed out that the used re-parameterization is not 

modifying the value of the path integral but is intended to better visual-
izing of its properties, towards solving it. As such, from expression (3.43) 
now appears clearer than before that for the systems governed by smooth 
potentials, the series expansion may now be applied respecting the path 
fluctuation, here in the second order truncation:

  (3.47)
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where the covariant notation for function products was assumed for 
maintaining the generality of the approach, in D-dimensions for instance. 
This way there is at once obtained a (truncated) series of path integral 
evolution amplitude of Eq. (3.43), and of any propagator in principle 
(Putz, 2009b):

(3.48)

as being driven by the quantum fluctuation’ various orders contribu-
tion, here restrained to the second order. This is a natural approach 
since at the end the quantum nature of the path integral is given by 
the quantum fluctuations themselves, from where the present focus of 
path integrals over the quantum fluctuations. The series is known as 
the semiclassical expansion since is formally done in the “powers of 
ħ-Planck.”

Now, looking on Eq. (3.48) as compared with the previously used 
quantum mechanical form, see (2.10) with (2.21), and Volume I/Chapter 4 
of the present five-volume work, the present propagator representation 
would be resumed as:

  (3.49)

×
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where we have used Eq. (3.37) as we will do any time this will help better 
visualizing the result, and where we have identified the series of Eq. (3.48) 
with the semiclassical factor FSC[η]. Now, expression (3.49) may be fur-
ther formally written as

  (3.50)

by introducing the so-called free imaginary time amplitude

  (3.51)

readily given by accommodating the free-propagator solution to the pres-
ent statistical and boundary transformation (3.37), see also Volume I/
Chapter 4 of the present five-volume work, namely

  (3.52)

having the normalization role for the semiclassical factor averages’ 
contributions:

  (3.53)

Therefore, the new form of path integral representation of evolution ampli-
tude, given either by Eq. (3.48) or (3.51) looks like (Putz, 2009b):

  (3.54)
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being now the problem of expressing the averaged values of the fluc-
tuation paths in single or multiple time connection: 〈ηi(τ)〉, 〈ηi(τ)ηj(τ)〉, 
〈ηi(τ)ηj(τ')〉, etc.

From heuristically point of view there is normal to arrive at this form 
telling us that once the quantum fluctuation are averaged along the quan-
tum evolution an then integrated in time the evolution amplitude to be 
determined. Observe also that the present semiclassical approach is not 
using the previous employed properties of classical action, and being 
somehow limited by its derivative behavior at edge of the space domain of 
integration, while having now the limitation in what respect the quantum 
fluctuation power. There is also useful remarking that the present semi-
classical approach may use the interplay between the previous solved free-
and-harmonic quantum motions, since the path integral (3.51) may equally 
be regarded as the free motion of the quantum fluctuation (naturally since 
they are not known apriori or with some possibility of instantaneously 
observation); at the same time, if one formally counts the kinetic term as 
the perturbative (aka fluctuation) oscillatory motion,

  (3.55)

a more complex picture of quantum fluctuation is obtained; in conclu-
sion, quantum fluctuated paths may be (or should be) treated as being 
a kind of harmonically free motion: harmonic since as fluctuations may 
be expanded in Fourier series (as originally perceived by Feynman) but 
also free since their unknown of instantaneous feature. Therefore, an 
appropriate use of both these feature will conduct to the reliable path 
integral representation. As we already have used the free-motion char-
acter of fluctuation paths, the harmonic one is entering the analysis in 
the next section.

3.3.2 CONNECTED CORRELATION FUNCTIONS

For calculating the quantum fluctuation paths’ averages one has to under-
stand their inner nature: in order reconciliation of free and harmonic 
features be achieved the so-called quantum current j(τ) is introduced 
(and presumed to appear in reality too as causing/driving the quantum 
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fluctuations), so that the current dependent propagator, known as the 
generating functional, is formed (Kleinert, 1986, 2004; Putz, 2009b):

  (3.56)

with which help one can recognized the equivalence:

  (3.57)

in accordance with general definition (3.53). One can nevertheless see that 
the quantum current appearance in Eq. (3.57) is under the perturbation 
form, so that it readily accounts for the deviation from the free fluctuation 
motion towards the (ordered) harmonically one. Therefore, although gen-
eral correlation definition may be advanced by the rule

  (3.58)

the problem of practically evaluation still remains. Aiming for solving it 
one observes the form (3.58) analogous with the partition function based 
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electronic density, see Eq. (2.11) for instance; the alternative formulation 
thus looks at the canonical (N=1, mono-particle) level like:

  (3.59)

where now the quantity Z[j] plays the role of the generating functional of 
the quantum fluctuation correlation (or connection) average. Yet the writ-
ing Eq. (3.59) may suffer from disconnecting character due to the presence 
of simple Z[j]; this may be better view from the further equivalent writing 
of Eq. (3.59) under the so-called n-point (correlation) functions:

  (3.60)

  (3.61)

with S+ being the Euclidian action, while the space and time were con-
sidered through slicing intervals for the respective events as custom for 
path-integral approaches.

The disconnected character of correlations (3.59)–(214) may be sur-
passed remembering that when under logarithm the partition function pro-
vides the thermodynamic free energy, here under canonical (N=1) form,

  (3.62)

which, being measurable-observable energy, is compulsory containing the 
connected parts of Z[j] (i.e., energy’s pieces combines towards the total 
energy). Therefore, this leaves with the idea that through introducing 
another generating functional as:

  (3.63)

it leads with simple rewriting of Eq. (3.59), however producing the 
connected part of correlation  that is naturally identified 
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with noting else than with a sort of generalized n-points (events) Green 
function:

  (3.64)

For having a better “feeling” how the connected and disconnected correla-
tion (fluctuation) functions (3.64) and (3.59) are linked, let’s start evaluat-
ing some orders of such correlations.

As such, absorbing the constants in the involved functionals, for the 
first order of correlation of Eq. (3.59) we successively have:

  (3.65)

until the single connected path (since fluctuation was already averaged 
out) that is nothing else that the classical path connecting the ending points 
of the quantum evolution.

Now, going to the second order of correlation of Eq. (3.59) one has 
(Putz, 2009b):

  (3.66)

a result that can be wisely rearranged as:

  (3.67)



Periodicity by Quantum Propagators in Physical Atom 125

or, even more practically for our purpose:

  (3.68)

In similar manner, while applying a sort of recursive rule, sometimes 
called also as cluster decomposition or cumulant expansion,

  (3.69)

with the pair-wise (Wick) decomposition of the n-points correlated 
function:

  (3.70)

one can easily obtain the higher orders of correlations, while still observ-
ing that all connected orders of events reduces to the combinations of pair-
connected events. For instance we get for the third order fluctuations the 
average contributions (Putz, 2009b)

 (3.71)

while for the fourth order more terms are involved:
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  (3.72)

Next, having these examples in hand, one tries to check them by deriv-
ing by an appropriate generating functional (3.56) working with the con-
nected function definition (3.58). At this moment one uses the previously 
reasoned dual nature of fluctuation paths, as “free-harmonic motion”—
see Eq. (3.55), to reconsider the free imaginary time amplitude (3.51) for 
free + harmonic fluctuation contribution (Putz, 2009b)

  (3.73)

with harmonic Euclidian action of fluctuations:

  (3.74)

while recovering at the end of calculation the condition
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  (3.75)

We like to rearrange the action (3.74) so that the quantum current contri-
bution to appear (from harmonic presence); in achieving this one firstly 
rewrites it by performing the integration by parts:

  (3.76)

where we have recognized the appearance of the harmonic differential 
operator:

  (3.77)

The form (3.76) is very useful through employing the Green equation for 
harmonic motion

  (3.78)

and of its integral property

  (3.79)

to perform the path shifting of fluctuations by transformation

  (3.80)

on its integrand, with the result:
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  (3.81)

so that by the prescribed integration in Eq. (3.76) the actual action trans-
forms to:

  (3.82)

under the assumption the physical integration interval (τa, τb) as assimilat-
ing the entirely evolution universe of the concerned problem, being thus 
assimilated with the mathematical interval (−∞, +∞), so that the delta-
Dirac integration property (3.79) is consistently applied. Also note that 
in expression (3.82) since the statistical Green function comes from its 
associate real time quantum mechanically problem, see bellow, it tracks 
also the time Wick “rotation t = τ/i,” in the integration measure, explaining 
the complex factors in the last term of (3.82).

With these, the harmonic fluctuation action of Eq. (3.82) may be recon-
sidered with the working form (Putz, 2009b):

 (3.83)

which under the condition ω → 0, as prescribed by Eq. (3.76), it can be 
further rearranged so that the free terms action to appear distinctively:

  (3.84)
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with the free Euclidian action

  (3.85)

was recovered though considering on its expression from Eq. (3.83) the 
reverse integration by parts procedure unfolded in Eq. (3.76).

Finally, with the identification:

  (3.86)

  (3.87)

in action (230), there follows that now its last two terms are free of quan-
tum fluctuation integration since considered under averaged forms, see 
Eqs. (3.65) and (3.68), respectively, releasing for the searched current-
dependent amplitude of (3.75) the actual solution

  (3.88)

which ultimately simply re-writes the current dependent propagator 
amplitude
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  (3.89)

as a wave-perturbative form of the free fluctuation amplitude (3.51), being 
intermediated by harmonic towards free limiting motion of quantum fluc-
tuations. Let’s further comment that the actual form (3.87) generalizes the 
previously “guessed” form (3.56) that provided the first order fluctuation 
correlation, having in addition to it the power to recover all other superior 
orders of correlation, for instance those given by Eqs. (3.68) and (3.69), by 
successive application of the formula (3.58).

With these the connected correlation function algorithm was provided 
and checked in details, being at disposition to be implemented in whatever 
order of semiclassical expansion of the path integral evolution amplitude 
(3.54); For exemplification, the next section will expose the analytic solu-
tion for the second order case.

3.3.3 CLASSICAL FLUCTUATION PATH AND CONNECTED 
GREEN FUNCTION

We already seen that aiming to evaluate any of the above-connected cor-
relation functions one imperatively needs the working analytical forms of 
classical fluctuation path

  (3.90)

as well as the connected Green function identified from (3.87)

  (3.91)

computed from the knowledge of the Green function of the harmonic 
oscillator problem (3.78) with (3.77) employed for the “free harmonic” 
limit ω → 0.
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Therefore, having evaluated the quantities (3.90) and (3.91) any 
semiclassical problem can be solved out analytical. Yet, for both quan-
tities in question the procedure of computing consists of three major 
stages (Putz, 2009b):

 (i) solving the associate real time harmonic problem;
 (ii) rotating the solution into imaginary time picture;
 (iii) taking the “free harmonic limit” ω → 0.

3.3.3.1 Calculation of Classical Fluctuation Path

As elsewhere discussed, see Volume I/Chapter 4 of the present five-vol-
ume work (Putz, 2016), the classical path for quantum fluctuation will not 
be written directly from the ordinary path free motion but using the similar 
result for harmonic motion upon which the free-harmonic condition ω → 
0 will be imposed; actually, the procedure is unfolded as follows.

The time classical path is firstly considered for harmonic motion, see 
Volume I/Section 4.3.3 of the present five-volume work (Putz 2016):

  (3.92)

The real to imaginary time rotation is performed on the result (3.92) 
according with the Wick rule prescription of (3.36), being this equiva-
lently of directly rewriting of expression (3.92) replacing the trigonometric 
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functions by their hyperbolic counterparts, according with the previously 
explained conversion, see Table 2.1/Section 2.3:

  (3.93)

The “free-harmonic” (ω → 0) limit is performed upon the expression 
(3.93) through employing the ordinary hyperbolic limit:

  (3.94)

This gives:

  (3.95)

which evidently does the same job as the classical free-motion result, see 
Volume I/Chapter 4 of the present five volume work, although not identi-
cal, since derived from a generalized perspective here.

The result (3.95) is implemented in the formula (3.38) to finally pro-
duce the classical fluctuation path:

  (3.96)

which takes even the simpler form:

  (3.97)

while rewritten within the thermodynamic picture:

  (3.98)
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3.3.3.2 Calculation of Connected Green Function

Now, going to the evaluation of the expression (3.91) we se that beyond 
of terms of the single correlation nature given by Eq. (3.96) we need the 
Green function of the harmonic oscillator, whose equation is of (3.78) 
type; written in real time picture (Putz, 2009b):

  (3.99)

has the advantage of having the frontier values fixed by the Dirichlet 
boundary conditions:

  (3.100)

in the same manner as the fluctuation paths in real time are set to cancels at 
the endpoint frontier, see Eq. (2.13). Such double boundary condition fixes 
the type of solution as being of the double trigonometric form, looking like

  (3.101)

while the time ordering problem

  (3.102)

with the Dirichlet boundary conditions:

  (3.103)

produces the variant Green function:

  (3.104)

yet with the same constant as for solution (3.101) since recognizing it 
belongs to the formally the same homogeneous equation of type:

  (3.105)
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and going to be determined from the appropriate identification in the inho-
mogeneous equation:

  (3.106)

Now, the left side of Eq. (3.106) is formed from the difference of the first 
derivatives of the solutions (3.101) and (3.104) approaching each other the 
event times (Putz, 2009b):

  (3.107)

which, through compared with the right side first term of Eq. (3.106) gives 
the searched constant:

  (3.108)

leaving with the real time Green function solution of the harmonic 
oscillator

  (3.109)

which combines both above solution with the help of Heaviside 
step-function:

  (3.110)
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Next, as previously done with the fluctuation paths, the change to the 
imaginary time picture is done automatically through trigonometric-
to-hyperbolic recipe Table 2.1/Section 2.3 to give

  (3.111)

noting that in the course of transformation the factor

  (3.112)

was tacitly absorbed with the parenthesis complex indices coming from the 
trigonometric to hyperbolic rotation exposed in the Table 2.1/Section 2.3, 
while the outside index assures the equivalence of Green function contri-
bution in the canonic-to-Euclidian path integrals action exponents:

 (3.113)

Expression (3.111) in then employed to the “free harmonic” limit (3.94) 
providing the result:

 (3.114)

which being free of harmonic influence it remains identically also from 
the quantity Gω→0 (τ, τ'). Still, it has to be converted into the searched con-
nected Green function (3.91), leaving with the time imaginary form:

 (3.115)
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or with its equivalent statistical one:

  (3.116)

when the thermodynamic picture (3.98) is considered.

3.3.4 SECOND ORDER FOR SEMICLASSICAL PROPAGATOR, 
PARTITION FUNCTION AND DENSITY

Aiming to evaluate the second order truncated expansion (3.54) one needs 
the evaluation of the quantities 〈ηi(τ)〉, 〈ηi(τ)ηj(τ)〉, 〈ηi(τ)ηj(τ')〉 and of their 
integration. Given the previous discussions one immediately has, see for 
instance the Eqs. (3.65) and (3.68):

  (3.117)

  (3.118)

With the help of expression (3.96) one can immediately compute the asso-
ciate integral appearing on (3.54) to be:

  (3.119)

Going now to the double connected correlation functions, one has the 
working analytical expression:

  (3.120)

through replacing into the expression (3.118) the classical fluctuation paths 
and connected Green function components, see Eqs. (3.96) and (3.115), 
respectively.
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Now there is immediate to compute the second order involved inte-
grals (Putz, 2009b).

At coincident times we have:

  (3.121)

or as:

  (3.122)

in thermodynamic environment given by Eq. (3.98).
At different times we get:

  (3.123)

with its quantum thermodynamic counterpart:

  (3.124)
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Now, replacing the values of Eqs. (3.119), (3.122), and (3.124) in the 
second order truncated semiclassical expression of imaginary time ampli-
tude (3.54) one finally gets (Putz, 2009b):

  (3.125)

Note that the expression (3.125) may provide the semiclassical canonical 
density in path integral based density functional theory (DFT) algorithm 
given by Eqs. (2.10) and (2.11), see also Volume I/Chapter 4 of the present 
five-volume set (Putz, 2016):

 (3.126)

to be used in construction of N-body density at thermodynamic equilibrium
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  (3.127)

by means of partition function

  (3.128)

At this point expression (3.128) may be elegantly transformed through 
considering the Gauss theorem of canceling integrated divergence, in a 
general D-dimensional case:

  (3.129)

which leaves with the useful differential relationship:

 (3.130)

that helps in rewriting partition function (3.128) firstly as:

  (3.131)

and finally, after exponentially resuming, as:

  (3.132)

In the same manner can be constructed also the higher orders of semiclas-
sical expansion of density matrix (3.48) or (3.54), following the cumu-
lant expansion (3.118), its fluctuation path and connected Green function 
components, as given by Eqs. (3.96) and (251), respectively, towards con-
structing the analytical canonical density, partition function and finally the 
many-body density to be used in DFT and of its (chemical) applications. 
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Such an application is to be in next presented for electronegativity and 
chemical hardness indices’ computations.

3.4 SEMICLASSICAL PERIODICITY OF ELECTRONEGATIVITY 
AND CHEMICAL HARDNESS

3.4.1 FOURTH ORDER FOR SEMICLASSICAL 
ELECTRONEGATIVITY AND CHEMICAL HARDNESS

The present picture is based on specialization of the density matrix ampli-
tude (xb, τb|xa, τa) such as to become uniformly in the valence shell proper-
ties, such as the space-time Bohr-Slater quantification on orbits (in atomic 
units m = ħ = e2/4πε0 = 1), see (Bohr, 1921; White, 1934)

  (3.133)

  (3.134)

under the atomic central field absolute representation

  (3.135)

where Zeff stands for the Slater effective atomic number specific for the 
multi-electronic atoms, being derived from the standard atomic number Z 
by subtracting the shielding effects of the inner electrons (Slater, 1930), 
see at the end of this section the shielding Slater rules. Note that the use of 
the absolute potential (3.135) has two fundamental reasons:

 (i) we retain the positive values of electronegativity in Eq. (3.34), 
in accordance with the definition (3.1) as well—because EN is 
evaluated as a stability measure of such nuclear-electronic system;

 (ii) the counterattractive sign in Eq. (3.135) is in accordance with the 
electric field orientation that drives the sense of the electronic 
conditional probability of the imaginary evolution amplitude 
evaluated from the center of atom to the current valence shell 
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radius. Therefore, the actual electronegativity can also be seen 
as power of holding electrons in the valence shell opposing to 
that exercised upon them from the center of atom. This way, the 
present EN definition and equation stand for the reconciliation 
of the two opposite phenomena acting upon the valence elec-
trons: attraction to nucleus and repulsion from the other atomic 
inner electrons, this way accounting for the earlier EA and IP 
influences, respectively. Moreover, in this picture, since no IP 
and electronic affinity is present the chemical hardness defini-
tion can be relaxed by its ordinary factor (1/2) to be simple 
taken as

  (3.136)

Note that for the semiclassical chemical hardness (3.136) the basic defi-
nition (3.3) was employed taking account that for neutral atoms we have 
N=Z, and where the minus sign was as well reconsidered according 
with the potential (3.135), while the ½ prefactor was formally abolished 
since at present semiclassical level an integer quantum “leap” LUMO-
HOMO is considered to be in agreement with the integer fluctuation 
domain of quantum propagation, see below Eqs. (3.38)–(7.43), see 
Eq. (4.158) of Section 4.2.3.3 as well as the discussion of Eq. (4.252) in 
Section 4.5 of the present volume.

Going to evaluating the quantum propagator (xb, τb|xa, τa) this can 
be done through considering the parameterized quantum paths as in 
Eq. (3.38), see (Feynman & Hibbs, 1965), where the classical path is 
replaced by the fixed (non time-dependent) average, according with 
(3.39) while the fluctuation path η(τ) remains and accounts for the whole 
path integral information to the actual different endpoint values of 
Eqs. (3.40) and (3.41) not to be confounded with the chemical hardness 
since they always indicate the imaginary time dependency they carry; 
the working quantum statistical path integral representation of the time 
evolution amplitude has, therefore, the input form of Eq. (3.43), see 
(Kleinert, 2004); it turns into its semiclassical form upon the potential 
expansion respecting the path fluctuations, see Eq. (3.47), here up to the 
fourth order contributions
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  (3.137)

Note that we have maintained here the physical constants appearances 
so that the semiclassical expansion procedure is clearly understood in 
orders of Planck’s orders, see below. As such, the path integral propa-
gator representation can be resumed as in Eqs. (3.49) and (3.50) by 
introducing the so-called free imaginary time amplitude (3.51) readily 
given by the free-propagator solution (3.52), it has the normalization 
role for averaging the semiclassical factor contribution as in Eq. (3.53). 
All in all, the semiclassical form of path integral representation of evo-
lution amplitude looks in the fourth order of Planck constant’s expan-
sion (Putz, 2011)
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  (3.138)

Now, we are faced with expressing the averaged values of the fluctua-
tion paths in single or multiple time connection, i.e., 〈ηi(τ)〉, 〈ηi(τ)ηj(τ)〉, 
〈ηi(τ)ηj(τ′)〉, etc. For that, it can be readily shown that the first order of the 
averaged fluctuation path resembles the classical (observed) path, see also 
Eq. (3.117)

  (3.139)

while the higher orders can be unfolded in connection with the Green 
functions/propagators according to the so-called cluster decomposition or 
cumulant expansion, see also Eq. (3.118)

  (3.140)

However, by involving the pair-wise (Wick) decomposition of the n-points 
correlated function
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  (3.141)

one can easily obtain the higher orders of correlations, however, observ-
ing that all connected orders of events are reduced to the combinations 
of pair-connected events. For instance, we get for the second, third and 
fourth order fluctuations the respective average contributions, in the same 
manner as in Section 3.3.4

  (3.142)

  (3.143)

 (3.144)

with δij type being the delta-Kronecker tensor. Next, for the quantum 
objects in question, i.e., for the classical path and connected Green func-
tion, the computing procedure consists of three major stages:

 (i) Considering and solving the associate real time harmonic problem;
 (ii) Rotating the solution into imaginary time picture;
 (iii) Taking back the “free harmonic limit,” this way providing 

the respective results for the classical fluctuation path as in 
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Eq. (3.97) and for connected Green function as in Eq. (3.116), 
respectively.

With expressions (3.97) and (3.116) back in Eqs. (3.142)–(3.144) 
and then in Eq. (3.138) some imaginary-time integrals vanish, see also 
Section 3.3.4, namely (Putz, 2011):

  (3.145)

while for the non-vanishing imaginary-time integrals appearing in Eq. 
(3.138), one yields

  (3.146)

  (3.147)

  (3.148)
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  (3.149)

  (3.150)

  (3.151)

  (3.152)

With these, the earlier form (3.138) takes the particular expression for the 
propagator needed in electronegativity formulation (3.2) (Putz, 2007)
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  (3.153)

Finally, the electronegativity integral (3.2) is solved analytically by apply-
ing the saddle-point recipe (see Appendix of this volume)

  (3.154)

very well accommodated for the present semiclassical context, where

  (3.155)

corresponds to the valence shell saddle radius expressed by the optimiza-
tion condition . Then, the fourth order semiclassical expansion 
for electronegativity is obtained (Putz, 2007, 2011)
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  (3.156)

with the components

  (3.157)

  (3.158)

  (3.159)

  (3.160)

  (3.161)

while, for chemical hardness, the working form (3.136) applied on the for-
mulas (3.156)–(3.161) yields the companion expansion (Putz, 2007, 2011)

  (3.162)

with the components

  (3.163)

 (3.164)
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  (3.165)

  (3.166)

  (3.167)

These results widely depend on the atomic effective numer Zeff depending 
on specific electronic shielding of the valence electrons, computed accord-
ing to the Slater’s rules, namely.

 (i) the electrons found in the exterior groups of the considered elec-
tron, do not contribute to shielding (s = 0);

 (ii) each electron in the same group with the one considered contrib-
utes with 0.33 to shielding, except the 1 s electron, whose contri-
bution is 0.30;

 (iii) if the calculation electron is ns or np then each electron belong-
ing to the layer with principal quantum number (n – 1) shields the 
nuclear charge by 0.85, and each electron with principal quantum 
number smaller than (n – 1) shielded with 1;

 (iv) for the discussed electrons, of type d or f, each electron belonging 
to any internal group, contributes to the shielding with 1.

The Slater resulted values for atomic valence states, are in Table 3.1 
presented, along the electronegativity and chemical hardness computed 
scales, respectively, in the next section.

3.4.2 FOURTH ORDER FOR SEMICLASSICAL 
ELECTRONEGATIVITY AND CHEMICAL HARDNESS

The associate atomic scales are obtained through implementing the 
intrinsic atomic parameters, n and Zeff, from Table 3.1 into the terms of 
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TABLE 3.1 Synopsis of the Periodic Principal Quantum Number n, of the Effective Charge Zeff, Calculated on the Slater Method 
(Slater, 1930), and of the Associated Electronegativity χFD and Chemical Hardness ηFD, Calculated on the Finite Difference (Lackner & 
Zweig, 1983), Respectively, for Ordinary Elements (Putz, 2007)

Legend: Symbol of the Element
Valence principal quantum number: n
Slater effective charge: Zeff

Finite difference electronegativity: χFD *

Finite difference chemical hardness: ηFD *

H
1

1

7.18

6.45

He
1

1.7

12.27

12.48
Li
2

1.30

3.02

4.39

Be
2

1.95

3.43

5.93

B
2

2.60

4.26

4.06

C
2

3.25

6.24

4.99

N
2

3.90

6.97

7.59

O
2

4.55

7.59

6.14

F
2

5.2

10.4

7.07

Ne
2

5.85

10.71

10.92
Na
3

2.20

2.80

2.89

Mg
3

2.85

2.6

4.99

Al
3

3.50

3.22

2.81

Si
3

4.15

4.68

3.43

P
3

4.80

5.62

4.89

S
3

5.45

6.24

4.16

Cl
3

6.10

8.32

4.68

Ar
3

6.75

7.7

8.11
K
4

2.20

2.39

1.98

Ca
4

2.85

2.29

3.85

Sc
4

3.00

3.43

3.22

Ti
4

3.15

3.64

3.22

V
4

3.30

3.85

2.91

Cr
4

3.45

3.74

3.12

Mn
4

3.60

3.85

3.64

Fe
4

3.75

4.26

3.64

Co
4

3.90

4.37

3.43

Ni
4

4.05

4.37

3.22

Cu
4

4.20

4.47

3.22

Zn
4

4.35

4.26

5.2

Ga
4

5.00

3.22

2.81

Ge
4

5.65

4.58

3.33

As
4

6.30

5.3

4.47

Se
4

6.95

5.93

3.85

Br
4

7.60

7.59

4.26

Kr
4

8.25

6.86

7.28



Periodicity by Q
uantum

 Propagators in Physical A
tom

 
151

Rb
5

2.20

2.29

1.87

Sr
5

2.85

1.98

3.74

Y
5

3.00

3.43

2.91

Zr
5

3.15

3.85

3.02

Nb
5

3.30

4.06

2.91

Mo
5

3.45

4.06

3.12

Tc
5

3.60

3.64

3.64

Ru
5

3.75

4.06

3.43

Rh
5

3.90

4.26

3.22

Pd
5

4.05

4.78

3.64

Ag
5

4.20

4.47

3.12

Cd
5

4.35

4.16

4.78

In
5

5.00

3.12

2.70

Sn
5

5.65

4.26

3.02

Sb
5

6.30

4.89

3.85

Te
5

6.95

5.51

3.54

I
5

7.60

6.76

3.74

Xe
5

8.25

5.82

6.34
* In units of eV (electron-volts).

TABLE 3.1 Continued
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Eqs. (3.156)–(3.167). However, one should use the calibrated expres-
sions for the electronegativity and chemical hardness for H atom, with 
the obtained pre-factors are summarized in the Table 3.2. With these the 
results for the elements of the first five periods of Periodic System are 
listed in Table 3.3.

The main characteristic of the actual atomic scales of electronegativity 
and chemical hardness is that a striking difference in terms of orders of 
magnitudes is observed between elements down groups.

However, this is not surprising because the actual definition of electro-
negativity and chemical hardness reflects the holding power with which 
the whole atom attracts valence electrons to its center. There is therefore 
natural that as the atom is richer in core electrons down groups lesser is 
the attractive force on the outer electrons from the center of the atom. In 
this respect, the actual scales mirror at the best the atomic stability at the 
valence shell.

Regarding the different orders of semiclassical influence on the elec-
tronegativity and chemical hardness values there is clear form Table 3.3 
that at least fourth order expansion is necessary to achieve convergence. 
For this reason, in what follow only the electronegativity and chemical 
hardness scales based on the combinations (3.156) and (3.162) will be 
discussed and compared with those obtained from the finite-difference 
approach displayed in Table 3.1.

To make the discussion more transparent  and , the data of 
Table 3.3 are supplied with their scaled graphical representations in 
Figure 3.1 respecting those of χFD and ηFD from Table 3.1.

TABLE 3.2 Calibration Coefficients of the Electronegativity χSC and Chemical Hardness 
ηSC for the Considered Orders of Semiclassical Expansions (3.156)–(3.167) Such Way 
Their Values for Atomic H to Recover the Respective Finite Difference Ones (as given in 
Table 3.1) (Putz, 2007)

χSC ηSC

[0] 27.21 × 158.713 27.21 × 71.2882
[I] 27.21 × (–86.9029) 27.21 × (–36.7442)
[II] 27.21 × 93.0596 27.21 × 44.7874
[III] 27.21 × 309.502 27.21 × 178.665
[IV] 27.21 × 251.14 27.21 × 137.576
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TABLE 3.3 The Electronegativity χSC and Chemical Hardness ηSC Values of Ordinary Elements Through Employing the Components of 
Table 3.1 in Eqs. (3.156)–(3.167) with the Periodic Inputs (n, and Zeff) of Table 3.1 and the Energetic Calibrated Pre-Factors of Table 3.2

Atom

H 7.18 7.18 7.18 7.18 7.18 6.45 6.45 6.45 6.45 6.45
He 20.75 22.56 18.81 14.30 15.52 10.96 12.32 9.32 4.4 5.91
Li 0.37×10–1 0.42×10–1 1.05×10–1 1.04×10–1 1.12×10–1 0.26×10–1 0.28×10–1 0.76×10–1 0.87×10–1 0.91×10–1

Be 0.84×10–1 0.98×10–1 2.32×10–1 2.21×10–1 2.43×10–1 0.39×10–1 0.45×10–1 1.12×10–1 1.2×10–1 1.28×10–1

B 1.5×10–1 1.81×10–1 4.06×10–1 3.72×10–1 4.15×10–1 0.52×10–1 0.63×10–1 1.45×10–1 1.46×10–1 1.6×10–1

C 2.34×10–1 2.93×10–1 6.23×10–1 5.47×10–1 6.2×10–1 0.65×10–1 0.82×10–1 1.77×10–1 1.64×10–1 1.86×10–1

N 3.37×10–1 4.35×10–1 8.82×10–1 7.39×10–1 8.54×10–1 0.78×10–1 1.03×10–1 2.07×10–1 1.75×10–1 2.07×10–1

O 4.59×10–1 6.11×10–1 11.81×10–1 9.39×10–1 11.08×10–1 0.91×10–1 1.26 ×10–1 2.35×10–1 1.79×10–1 2.22×10–1

F 6.×10–1 8.22×10–1 15.17×10–1 11.4×10–1 13.77×10–1 1.04×10–1 1.5×10–1 2.61×10–1 1.76×10–1 2.31×10–1

Ne 7.59×10–1 10.71×10–1 18.87×10–1 13.33×10–1 16.54×10–1 1.17×10–1 1.75×10–1 2.86×10–1 1.66×10–1 2.35×10–1

Na 0.06×10–2 0.08×10–2 0.3×10–2 0.2×10–2 0.3×10–2 0.2×10–3 0.3×10–3 1.3×10–3 1.2×10–3 1.4×10–3

Mg 0.1×10–2 0.14×10–2 0.49×10–2 0.38×10–2 0.48×10–2 0.3×10–3 0.4×10–3 1.6×10–3 1.5×10–3 1.8×10–3

Al 0.15×10–2 0.22×10–2 0.73×10–2 0.57×10–2 0.71×10–2 0.4×10–3 0.6×10–3 2.×10–3 1.7×10–3 2.1×10–3

Si 0.21×10–2 0.31×10–2 1.02×10–2 0.78×10–2 0.99×10–2 0.45×10–3 0.67×10–3 2.3×10–3 2.×10–3 2.5×10–3

P 0.28×10–2 0.43×10–2 1.36×10–2 1.01×10–2 1.3×10–2 0.53×10–3 0.8×10–3 2.7×10–3 2.2×10–3 2.8×10–3

S 0.36×10–2 0.56×10–2 1.75×10–2 1.27×10–2 1.64×10–2 0.6×10–3 0.93×10–3 3.×10–3 2.38×10–3 3.06×10–3

Cl 0.45×10–2 0.71×10–2 2.17×10–2 1.54×10–2 2.02×10–2 0.7×10–3 1.06×10–3 3.33×10–3 2.54×10–3 3.33×10–3

Ar 0.56×10–2 0.87×10–2 2.6×10–2 1.8×10–2 2.4×10–2 0.74×10–3 1.2×10–3 3.66×10–3 2.67×10–3 3.58×10–3

K 0.04×10–4 0.07×10–4 0.3×10–4 0.2×10–4 0.3×10–4 0.17×10–5 0.27×10–5 1.38×10–5 1.1×10–5 1.46×10–5
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Atom

Ca 0.07×10–4 0.12×10–4 0.53×10–4 0.36×10–4 0.5×10–4 0.22×10–5 0.36×10–5 1.78×10–5 1.39×10–5 1.87×10–5

Sc 0.08×10–4 0.13×10–4 0.59×10–4 0.39×10–4 0.55×10–4 0.23×10–5 0.38×10–5 1.87×10–5 1.46×10–5 1.96×10–5

Ti 0.08×10–4 0.14×10–4 0.65×10–4 0.43×10–4 0.6×10–4 0.24×10–5 0.4×10–5 1.96×10–5 1.52×10–5 2.05×10–5

V 0.09×10–4 0.16×10–4 0.71×10–4 0.47×10–4 0.66×10–4 0.25×10–5 0.42×10–5 2.05×10–5 1.59×10–5 2.15×10–5

Cr 0.1×10–4 0.17×10–4 0.77×10–4 0.51×10–4 0.72×10–4 0.26×10–5 0.44×10–5 2.14×10–5 1.65×10–5 2.23×10–5

Mn 0.11×10–4 0.19×10–4 0.84×10–4 0.56×10–4 0.78×10–4 0.27×10–5 0.46×10–5 2.23×10–5 1.72×10–5 2.33×10–5

Fe 0.12×10–4 0.21×10–4 0.91×10–4 0.60×10–4 0.85×10–4 0.29×10–5 0.48×10–5 2.32×10–5 1.78×10–5 2.42×10–5

Co 0.13×10–4 0.22×10–4 0.99×10–4 0.65×10–4 0.92×10–4 0.3×10–5 0.5×10–5 2.42×10–5 1.84×10–5 2.51×10–5

Ni 0.14×10–4 0.24×10–4 1.06×10–4 0.7×10–4 0.99×10–4 0.31×10–5 0.52×10–5 2.5×10–5 1.9×10–5 2.6×10–5

Cu 0.15×10–4 0.26×10–4 1.14×10–4 0.75×10–4 1.1×10–4 0.32×10–5 0.54×10–5 2.6×10–5 1.96×10–5 2.68×10–5

Zn 0.16×10–4 0.28×10–4 1.23×10–4 0.8×10–4 1.13×10–4 0.33×10–5 0.57×10–5 2.7×10–5 2.02×10–5 2.77×10–5

Ga 0.21×10–4 0.37×10–4 1.61×10–4 1.04×10–4 1.48×10–4 0.38×10–5 0.66×10–5 3.07×10–5 2.27×10–5 3.15×10–5

Ge 0.27×10–4 0.48×10–4 2.1×10–4 1.31×10–4 1.88×10–4 0.43×10–5 0.76×10–5 3.46×10–5 2.5×10–5 3.51×10–5

As 0.34×10–4 0.61×10–4 2.55×10–4 1.61×10–4 2.32×10–4 0.48×10–5 0.86×10–5 3.84×10–5 2.73×10–5 3.86×10–5

Se 0.41×10–4 0.75×10–4 3.09×10–4 1.92×10–4 2.79×10–4 0.53×10–5 0.96×10–5 4.22×10–5 2.93×10–5 4.2×10–5

Br 0.49×10–4 0.9×10–4 3.69×10–4 2.27×10–4 3.31×10–4 0.58×10–5 1.07×10–5 4.59×10–5 3.13×10–5 4.54×10–5

Kr 0.58×10–4 1.08×10–4 4.33×10–4 2.63×10–4 3.88×10–4 0.63×10–5 1.18×10–5 4.96×10–5 3.31×10–5 4.86×10–5

Rb 0.03×10–6 0.06×10–6 0.36×10–6 0.21×10–6 0.32×10–6 0.13×10–7 0.25×10–7 1.56×10–7 1.07×10–7 1.59×10–7

Sr 0.05×10–6 0.11×10–6 0.6×10–6 0.35×10–6 0.54×10–6 0.17×10–7 0.33×10–7 2.01×10–7 1.37×10–7 2.04×10–7

Y 0.06×10–6 0.12×10–6 0.66×10–6 0.38×10–6 0.59×10–6 0.18×10–7 0.34×10–7 2.12×10–7 1.44×10–7 2.15×10–7

TABLE 3.3 Continued
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Atom

Zr 0.07×10–6 0.13×10–6 0.73×10–6 0.42×10–6 0.65×10–6 0.19×10–7 0.36×10–7 2.22×10–7 1.5×10–7 2.25×10–7

Nb 0.07×10–6 0.15×10–6 0.8×10–6 0.46×10–6 0.72×10–6 0.2×10–7 0.38×10–7 2.33×10–7 1.57×10–7 2.35×10–7

Mo 0.08×10–6 0.16×10–6 0.87×10–6 0.5×10–6 0.78×10–6 0.21×10–7 0.4×10–7 2.43×10–7 1.64×10–7 2.45×10–7

Tc 0.09×10–6 0.17×10–6 0.95×10–6 0.55×10–6 0.85×10–6 0.22×10–7 0.42×10–7 2.53×10–7 1.71×10–7 2.56×10–7

Ru 0.09×10–6 0.19×10–6 1.03×10–6 0.59×10–6 0.92×10–6 0.23×10–7 0.44×10–7 2.64×10–7 1.77×10–7 2.66×10–7

Rh 0.1×10–6 0.21×10–6 1.12×10–6 0.64×10–6 1.×10–6 0.23×10–7 0.46×10–7 2.74×10–7 1.84×10–7 2.76×10–7

Pd 0.11×10–6 0.22×10–6 1.2×10–6 0.69×10–6 1.07×10–6 0.24×10–7 0.47×10–7 2.85×10–7 1.9×10–7 2.86×10–7

Ag 0.12×10–6 0.24×10–6 1.29×10–6 0.74×10–6 1.15×10–6 0.25×10–7 0.49×10–7 2.95×10–7 1.96×10–7 2.96×10–7

Cd 0.13×10–6 0.26×10–6 1.39×10–6 0.79×10–6 1.24×10–6 0.26×10–7 0.51×10–7 3.05×10–7 2.03×10–7 3.06×10–7

In 0.17×10–6 0.34×10–6 1.83×10–6 1.03×10–6 1.63×10–6 0.3×10–7 0.6×10–7 3.5×10–7 2.3×10–7 3.5×10–7

Sn 0.21×10–6 0.44×10–6 2.33×10–6 1.3×10–6 2.07×10–6 0.34×10–7 0.68×10–7 3.95×10–7 2.56×10–7 3.92×10–7

Sb 0.27×10–6 0.55×10–6 2.9×10–6 1.61×10–6 2.56×10–6 0.38×10–7 0.77×10–7 4.39×10–7 2.81×10–7 4.34×10–7

Te 0.32×10–6 0.68×10–6 3.52×10–6 1.94×10–6 3.1×10–6 0.42×10–7 0.86×10–7 4.83×10–7 3.05×10–7 4.75×10–7

I 0.39×10–6 0.81×10–6 4.2×10–6 2.29×10–6 3.68×10–6 0.46×10–7 0.95×10–7 5.27×10–7 3.29×10–7 5.16×10–7

Xe 0.46×10–6 0.97×10–6 4.94×10–6 2.68×10–6 4.32×10–6 0.5×10–7 1.04×10–7 5.71×10–7 3.51×10–7 5.56×10–7

*All values are in eV (electron-volts) (Putz, 2007).

TABLE 3.3 Continued
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For both semiclassical electronegativity and chemical hardness fourth 
order scales there is observed a better regularization of their increasing 
trend along periods, a feature more apparent for the actual chemical hard-
ness scale, see Figure 3.1. More, for chemical hardness a phenomenologi-
cal rule would demand to have lower values than that of the associated 
electronegativity. This observation is based on the secondary order effects 
that chemical hardness controls throughout its basic definition (3.3) as the 
derivative of the electronegativity. However, this rule not always obeyed 
for the finite difference ηFD values (for instance, see the elements He, Ne, 
Ar, Kr, Xe) is well satisfied with the present semiclassical ones  com-
pared with their counterpart electronegativities, χFD and , respectively. 
There is thus hope that the actual chemical hardness scale to furnish a better 
frame of analysis and testing of bonding and reactivity through application 
of the chemical hardness principles (Sen & Mingos, 1993; Pearson, 1997).

For electronegativity, the present  values seem to respect almost all 
empirical criteria for acceptability (Murphy et al., 2000). For instance, 
the atoms N, O, F, Ne, and He have the highest electronegativities among 
the main groups; the electronegativity of N is by far greater than that of 
Cl—a situation that is not met in the finite-difference approach; the Si 
rule demanding that most metals to have EN values which are less than 
or equal to that of Si is as well widely satisfied; the considered metalloid 
elements (B, Si, Ge, As, Sb, Te) clearly separates the metals by nonmetals; 
along periods the highest EN values belong to the noble elements—a rule 
as well not fulfilled by the couples (Cl, Ar), (Br, Kr), and (I, Xe) from the 
finite difference scheme, see Table 3.1 (Putz, 2007).

The electronegativities of chalcogens (O, S, Se, Te) reveal great dis-
tinction between the chemistry of oxygen and the rest elements of VIA 
group; the transitional metals are grouped in a distinct contracted region 
thus closely emphasizing on the d-orbitals effects, a criteria almost not 
fulfilled by the finite-difference values of electronegativities of Table 3.1, 
see also Figure 3.1. Finally, we have to point that the systematic decrease 
of orders of magnitude of electronegativity and hardness semiclassical 
scales of Table 3.3 and Figure 3.1 has a fundamental consequence, namely 
stands as the computational proof that the electronegativity and hardness 
are indeed pure quantum indices. As such, they do not manifest with the 
same intensity among all elements of the Periodic System but having val-
ues that tend to considerably diminish as the frontier electrons are farer 
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FIGURE 3.1 Comparative trend of rescaled electronegativity (left panel) and chemical 
hardness (right panel) fourth order semiclassical values of Table 3.3 respecting their finite-
difference counterparts of Table 3.1, for the second, third, fourth, and fifth periods of 
elements, from top to bottom, respectively (Putz, 2007).

and feel less and less the quantum influence (potential and force) of the 
nucleus and of the core electrons, in accordance with the electronic local-
ization principles in an atom, see the Chapter 5 of the present volume.
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After all, the present electronegativity and chemical hardness values 
establish new viable scales, grounded on intrinsic quantum properties of 
the atoms.

The analysis of data represented in Figure 3.1 leads to three major 
conclusions for the use of the Green function propagators in evaluat-
ing the reactivity indices of electronegativity and chemical hardness 
(Putz, 2007):

• The striking difference in terms of orders of magnitudes observed 
between elements down groups is the main characteristic of the 
actual atomic scales of electronegativity and chemical hardness; 
however, due to the fact the actual definition of electronegativity and 
chemical hardness reflects the holding power with which the whole 
atom attracts valence electrons to its center—this is not a surprising 
behavior;

• As the atom is richer in core electrons down groups the attractive 
force is lesser on the outer electrons from the center of the atom. 
In this regard, the actual scales mirror the atomic stability of the 
valence shell;

• The systematic decrease of orders of magnitude of electronegativity 
and hardness semiclassical scales may stand as the computational 
proof that the electronegativity and hardness behave like pure quan-
tum/structural indices, although not both with a clearly demonstrated 
observable character—see Section 3.2. As such, they are not mani-
festing themselves with the same intensity among all elements of 
the Periodic Table, while displaying values that tend to consider-
ably diminish as the frontier electrons are farther and feel less and 
less the quantum influence (the force) of the nucleus and of the core 
electrons.

3.5 CONCLUSION

The main lessons to be kept for the further theoretical and practical inves-
tigations of the quantum-propagators in the periodical physical atom that 
are presented in the present chapter pertain to the following:

• Identifying the observational nature of the electronegativity as 
associated with the atomic frontier propensity to engage electronic 
interactions;
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• Employing the quantum Hilbert/Fock space of 0-to-1 occupancy to 
reveal the identity between the orbital/density based electronegativ-
ity with the minus of the global chemical potential of a given atomic 
system;

• Writing the same Fock occupancy formalism for the second order of 
the atom’s frontier interaction, i.e., referring to the chemical hard-
ness observability, with a not-determinate result, so that assuming 
it as indeed merely belonging to the “chemical” (fuzzy) feature of 
a chemical system in general and of an atom in special, departing 
from electronegativity behavior from observability perspective;

• Dealing with path integral formalism for characterizing the physical 
atom, i.e., as a modern—observationally related—methodology;

• Characterizing the physical atom by the quantum amplitude instead 
of the customary wave function and fashioned orbitals with the con-
figurational consequences;

• Understanding the electronic movement in physical atomic as being 
driven by the connected and correlated functions especially by the 
(temporally) causal Green-function/quantum propagators;

• Describing the physical atom as a semiclassical description of quan-
tum motion, i.e., merely quantum than classical yet with certain 
orders of Planck constant contributions in electronic orbits in atom;

• Learning the difference between the second and the fourth order 
of path integral expansion of the quantum amplitude of electronic 
orbits as quantifies in the associated partition functions;

• Treating the temporal characterization of the electronic orbits in 
physical atom by Wick rotation towards the temperature character-
ization of a given quantum state;

• Solving the physical atom by combining the semiclassical path inte-
gral expansion for causal electronic motion with the Bohrian pre-
scription for space-time characterizing the closed orbits;

• Formulating the electronegativity and chemical hardness working 
semiclassical expressions in physical atom by invoking the spectro-
scopically accepted Slater rules in characterizing the atomic shells in 
general and of the valence one in special;

• Interpreting the electronegativity as an integral rather than a deriva-
tive effect of electronic behavior in the physical atom, in close agree-
ment with the path integral present formulation;

• Connecting the integral interpretation of electronegativity with 
its actual interpretation as the power of holding electrons in the 
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valence shell opposing to that exercised upon them from the center 
of atom;

• Developing the chemical hardness as derivative of the path integral 
(quantum amplitude) related electronegativity, in accordance with 
the local/intra-structure chemical hardness behavior not associated 
with a cutting-observational measure, as above shown;

• Finding applications of path integral related electronegativity and 
related chemical hardness by illustration of physical atomic periodic-
ity across the periodic system, yet with fundamental finding in plac-
ing chemical hardness in the quantum fluctuation regime, respecting 
electronegativity, with less and less observational effect (magnitude 
of its absolute value) down the groups while systematically increas-
ing along the periods.
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ABSTRACT

Aiming to affirm specific physical-chemical quantities of electronegativity 
and hardness as the major electronic indicators of structure and reactivity 
their systematic definition are presented and discussed, for valence atomic 
region, by Bohmian quantum mechanics and by the associated density 
functionals, along introducing their related reactivity index as electrophilic-
ity, within conceptual density functional theory in general and for softness 
bilocal to global quantum observability in special; this enterprise may serve 
for further analytical studies of periodicity for atomic properties (atomic 
radii, diamagnetic susceptibility, or polarizability)—here undertaken, as 
well as for future understanding and chemical bonding, reactivity, aroma-
ticity, up to the biological activity modeling of atoms in molecules and in 
nanostructures—in the forthcoming volumes of this five-volume work.

4.1 INTRODUCTION

As the classical quantum chemistry had proposed a series of principles 
and rules to operate in describing the atomic, molecular samples and the 
reaction mechanisms (Bredow & Jug, 2005) also the modern quantum 
physical-chemistry likes to unitarily characterize the quantum nature of 
the chemical and biochemical bonding and transformation on the base of 
the electronic density (Burresi & Sironi, 2004).
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While searching for an adequate expressing of the electronic density 
al atomic and polyatomic forms of matter through an entire arsenal of 
quantitative techniques such as are the computational methods of the self-
consistent field, of the pseudopotentials, of the matrices and their combi-
nations, and of the graph theory (Vishveshwara et al., 2002; Fujita, 2005), 
the resulted electronic densities can be then properly integrated or dif-
ferentiated to provide density functionals, e.g., the total energy, the bond 
energy, the promoting energy, the solvation energy, reactivity indices, 
etc. (Tomasi, 2004), as well as the localization functions or the electronic 
basins of stability (Berski et al., 2003; Kohout et al., 2004).

However, the conceptual chemistry evolves through developing spe-
cific objects expressing the reality of chemical reactivity, eventually at 
the valence levels of by means of the frontier electron movements. In this 
context, the electronegativity stands as the benchmark as well as the fore-
front of the modern conceptual quantum chemistry since it may be related 
and correlated in principle with any many-electronic systems behavior in 
isolated and reactive environment. Moreover, considered jointly with its 
companion as hardness, arisen as the second order controlling factor of 
the total or valence energy expansion, constitute one of the most powerful 
conceptual binomial in Chemistry with which help either chemical bond-
ing or the reactivity or even biological activity may be modeled in an ele-
gant yet efficient analytical framework (Tarko & Putz, 2010; Putz, 2011a).

However, the striking difference between an atom as a physical entity, 
with an equal number of electrons and protons (thus in equilibrium), and 
the same atom as a chemical object, with incomplete occupancy in its 
periphery quantum shells (thus attaining equilibrium by changing accept-
ing or releasing electrons), is closely related to the electronegativity phe-
nomenology in modeling chemical reactivity. Moreover, this difference 
triggers perhaps the most important debate in conceptual chemistry: the 
ground vs. valence state definition of an atom.

As such, the present chapter unfolds the most intriguing aspects of electro-
negativity and hardness, from their basic definitions and principles to density 
functional forms, when clarifying their absolute and chemical systematic real-
izations; the observability character was already approached in the Chapter 3 
by means of the second quantization formalism according which electronega-
tivity is indeed revealed as the minus of the chemical potential or even more 
as the negative of the eigen-energies for fully occupied states thus affirming 
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the plenty of observability, while the hardness still preserves the “quantum 
hidden” character for such circumstance along the vacuum state, with proved 
no observability for factionary occupancy; such electronegativity vs. chemical 
hardness behavior will be also by this chapter explored, and further combined 
in the new concept of electrophilicity, while also driving the related atomic 
periodicity characteristics as radii, diamagnetic susceptibility and or polariz-
ability, while showcasing the reasonable quantitative correlation and predic-
tion across the main periods of the Periodic Table (Putz, 2008a).

4.2 ELECTRONEGATIVITY AND ITS QUANTUM PRINCIPLES

4.2.1 GENERAL DEFINITIONS AND PRINCIPLES

A series of definitions and principles, some based on a purely qualitative 
logic, others given as a consequence, some refining equivalents revealing 
of new aspects and reformulating in other terms the fundamental problem 
of quality—quantitative defining and implementation the electronegativ-
ity concept, perhaps the most celebrated concept of Chemistry along the 
chemcial bonding, will be here enounced and commented (Komorowski, 
1983a–c, 1987a,b ).

DEFINITION EN1: It will mean by the electronegativity of a system—
atom, ion, molecule or radical—that global property which determines 
how the bonding electrons will be distributed between this system and 
another, when the two systems become connected by a chemical bond.

Naturally, the basic entity from where the chemical reactivity starts 
and the chemistry as a science itself, is the atom with its electron cloud. 
Ultimately, from this entity and from its properties should start the basic 
study for defining the global properties of the electronic distribution 
and the tendency of evolution of this distribution defined through the 
electronegativity.

PRINCIPLE EN1: A successful evaluation of the atomic electronegativity 
as a global property of the electronic distribution should be based on the 
compaction degree of the electronic cloud around the atomic nucleus.

It can be followed the logical transposition of this principle in the sche-
matic representation in Figure 4.1, where the properties of the atom in ques-
tion devolve from the occupation degree with electrons of the valence shell. 
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It is noted that for a progressive occupation of the valence shell from one 
electron to eight electrons occur the characteristic changes regarding:

1. the effective nuclear charge, the fraction of the nuclear charge that 
can be “felt” by the electrons from the valence orbitals, increases 
with the increasing of the valence electrons number;

2. the covalent radius, correlated with the degree of electron cloud 
compaction decreases with the increasing of the number of the 
valence electrons;

3. the electronegativity, correlated with the tendency of the electronic 
compaction on the valency stratum also increases with the increas-
ing of the number of the electrons in this shell;

4. homonuclear bond energy, depends on the electronegativity and 
follow its tendency;

5. the covalence, which corresponds to the capacity to put together a 
number of electrons in order to satisfy a more stable compaction of 
the electronic cloud around the nucleus;

6. the bond angles, formed between the bonding electrons and the 
pairs of the non-participating electrons.

All these properties naturally devolve from the charges modifications 
of the atomic structure and are directly correlated from the electronic 

FIGURE 4.1  The modification of the atomic structure properties: (a) the occupancy 
degree of the valence states, (b) with the consequence of modifying the the covalence; 
(c) the bond angles; (d) the covalent radius; (e) the effective nuclear charge; (f) the 
electronegativity; and (g) the energy of homonuclear bond; after Sanderson (1988a,b).
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distribution, i.e., in relation with the electronegativity (Matsunaga, 1969; 
Matcha, 1983; Haasnoot, 1980).

Of course, they appear also in a few particular cases of coordination, 
where are necessary to formulate some principles of influence of the spe-
cific electronegativity.

PRINCIPLE EN2: When the valence electrons of the atoms in the main 
groups are left unused in the compounds formation, they act in a way that 
reduces the initial electronegativity of the atom.

Is the case of the “inert pair effect” manifested through the tendency 
of elements from the three main group to have the oxidation state I and 
of the elements in the four main group to have the oxidation state II. For 
example, in case of thallium oxide (I), Tl2O, the “inert pair” reduces the 
electronegativity from 2.25 for thallium (III) to 0.99 for thallium (I), so 
that the compound becomes more strongly bonded than is expected.

PRINCIPLE EN3: For the transitional elements, the deeper d electrons 
which are not directly involved in the bonds, also reduce the electronega-
tivity, so that the 3d electrons have a much higher effect in bond than those 
of the 4d and 5d orbitals.

This is the case, for example, of the atoms of Cr(VI) witch have an electro-
negativity of 3.37, much higher than that of the W(VI) atoms, which because 
of the 3d internal orbitals have an electronegativity of 1.67 and therefore ren-
der the combination with the oxygen more stable in the WO3 than for CrO3.

PRINCIPLE EN4 (of transferability): When all the normal valence elec-
trons are involved in a bond, there is not (yet) any restriction for the elec-
tronegativity to not be the same, even for different oxidation states.

For example, in the nitrogen case, has the same electronegativity, both 
in the ammonia compounds and nitrogen oxides.

Perhaps the most important principle regarding the nature of the electro-
negativity is that one which tells what happens with it when two atoms (elec-
tronic systems), initially different, are combining in order to form a compound:
PRINCIPLE EN5 (of electronegativity equalization): In a compound, all 
the atoms (the electronic systems) are adjusted to a intermediate electro-
negativity, global for the respective compound

Here, it will be given a qualitative argument, proposed by Sanderson in 
1951, which will be followed by an analytical justification in a further spe-
cial paragraph, dedicated to this principle. As example, for two atoms, the 
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generalization being immediate, initially found in neutral electric states, 
but which have different electronegativities, as a result of their coordina-
tion, occurs a charge transfer from the less electronegative to the most 
electronegative, resulting a complex from this combination in which the 
first atom became partially positively charged, and the second partially 
negatively charged (Sanderson, 1988a,b).

The form atom the complex which is partially negatively charged, actu-
ally presents a growth in the average of the electronic population, which 
leads to the increasing of the interelectronic repulsion and to the reduction  
of the effective nuclear charges. From Figure 4.1, this means an increase 
of the electronic cloud radius, a reduction in the electronic compactness 
and ultimately leads to a decrease of the electronegativity.

In the complex, the atom partially positively charged, presents a reduc-
tion of the interelectronic repulsion, therefore an increase of the effective 
nuclear charges, an increase of the compactness of the electronic cloud 
remained around the nucleus and consecutively leads to the increase of the 
electronegativity (Mullay, 1987a,b).

Therefore, the initially atom more electronegative becomes less elec-
tronegative and that one less electronegative becomes more electronega-
tive, when two initial atoms enter in a chemical combination, involving an 
electronic transfer until the equalization of the atoms electronegativities in 
the formed compound.

PRINCIPLE EN6: The intermediate electronegativity, resulted from the 
equalization of the initial electronegativities of the subsystems which 
compose a chemical assembly, is quantitatively equal to the average of the 
electronegativities of the initial systems.

Parr and Pearson showed in 1983–1989 that (Parr & Pearson, 1983; 
Pearson, 1986, 1987, 1988a-b, 1989):

PRINCIPLE EN7: The electronegativity corresponds to the chemical 
potential, taken with a change sign.

This fact is as simple formulated as efficient. The association is even natu-
ral, as long as the electronegativity can be understood as a virtual “seizure” of 
electrons, and the chemical potential can be interpreted as the potency of “pro-
pel” electrons. From the two “opposite directions,” but on the same “phenom-
enological direction” the Principle EN7 is flowing naturally. However, they 
have very important effects and an analytical efficacy that will be revealed 
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during this study. As a first consequence, the electronegativity equalization 
principle, the Principle EN5, results immediately in terms of chemical poten-
tials, from the thermodynamic considerations of the states which characterize 
a new compound, formed by its initial components, which requires the equi-
librium potential equalization, and thus of the electronegativities.

4.2.2 CLASSICAL AND QUANTUM PICTURES FOR 
ELECTRONEGATIVITY

The studies made for over the 70 years to characterize in a quite realistic way 
the electronegativity concept can be broadly grouped into two distinct periods.

A period called classic, in which it was predominantly tried to define 
the atomic electronegativity and the second period, the modern stage, 
which pursued the association of some electronegativities for a group of 
atoms in molecules or of some molecular fragments so that their elec-
tronegativity should be (almost) identically transferred when the relative 
group changes its coordination partners, in other complexes. Therefore, in 
the second period, the concern was focused on the molecular electronega-
tivity calculation of group, orbital, together with the determination of the 
partial charge distributed between the atoms of the molecular structure.

The moment in which the electronegativity has been approached in 
terms of the density functionals theory was thanks to the effort of Parr 
and his collaborations from 1978 (Parr et al., 1978). However, there are 
some common characteristics of the different approaches that can be com-
pressed into a principle of the molecular formation:

PRINCIPLE EN8: (a) The molecules consist of atoms kept together by 
chemical bonds. (b) The chemical bonds involve an electronic distribution 
between the molecular atoms. (c) The electrons are not always equally 
distributed between the atoms.

The main contributions in defining the electronegativity for the various 
scales and physical images are summarized in the following section.

4.2.2.1 Pauling and Mulliken Scales

In 1932 Pauling formulated the first idea referring to the explanation of the 
chemical bond nature by introducing the electronegativity (Pauling, 1932):
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PRINCIPLE EN9 (of Pauling): (a) The normal covalent character between 
two atoms A and B is transposed by the bond energies additivity of 
involved atoms:

  (4.1)

(b) The ionic character of the chemical bond between the atoms A and B 
involves an inequality in the electrons distribution between the atoms and 
brings a contribution of the normal covalent energy proportional to the 
electronegativities difference of the atoms involved in bond:

  (4.2)

Using thermochemical data for the bonds formation and based on the 
principle just expressed, Pauling was able to calculate the electronegativ-
ity for the main elements from the periodic table (see Table 4.1).

In Table 4.1 are presented the electronegativities calculated by Pauling, 
where for the rare gases the values were completed by the Allen’s contribu-
tion (Allen & Huheey, 1980). It is noted the increase of the electronegativity 
as a general tendency once with the increase of the groups, by the correlation 
with the electronic compactness, especially of the valence layers, concomi-
tant with a decrease in the groups once with the periods increase, due to the 
decrease of the effective nuclear charge, the nuclear charge being shielded by 
more and more electronic layers, the tendency to “seize” electrons decreases.

This method deficiency consists in the fact that the association of a 
single electronegativity value for each atom do not cover all the cases of 
coordination, in this case, the effects due to the hybridizations and also the 
charges distributed to atoms in molecule, are not counted.

TABLE 4.1  The Electronegativities Values Calculated by Pauling Method (Pauling, 1932)

H 2.1 He 5.2
Li 1.0 Be 1.5 B 2.5 C 2.5 N 3.0 O 3.5 F 4.0 Ne 4.5
Na 0.9 Mg 1.2 Ai 1.5 Si 1.8 P 2.1 S 2.5 Cl 3.0 Ar 3.2
K 0.8 Ca 1.1 Sc 1.3 Ge 1.8 As 2.0 Se 2.4 Br 2.8 Kr 2.9
Rb 0.8 Sr 1.0 Y 1.2 Sn 1.8 Te 1.9 Te 2.1 I 2.5 Xe 2.4
Cs 0.7 Ba 0.9 La-Lu 1.1 Pb 1.8 Po 2.0 Po 2.0 At 2.2 Rn 2.1
Fr 0.7 Ra 0.9 Ac 1.1
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Therefore, it was imposed the introduction of a more comprehen-
sive image, better accepted as a reference in particular in the theoretical 
calculations, due to Mulliken’s and formulated for the first time in 1934 
(Mulliken, 1934):

PRINCIPLE EN10 (of Mulliken): (a) A chemical bond between two atomic 
systems (molecular) can be seen as a competition between them for the 
electrons pairs. (b) The electronegativity of such a system (S) involved in 
the chemical bond is expected to represent the system’s ability to compete 
for the electrons and has the general expression given by:

  (4.3)

where IP, respectively EA, represents the ionization potential and the elec-
tronic affinity, in agreement with the competition for the electrons: the 
system tends to keep an electron (the resistance to become positive ion), 
but also tends to simultaneously acquire a second electron (becoming a 
negative ion), see Figure 4.2.

FIGURE 4.2  Schematically representation of the parabolic dependence of the total 
energy of an N-electronic system, connecting its ionic (± h) states (Putz, 2003).
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For an atom (A), the IPA and EAA values can be calculated in any state: 
fundamental state, excited states or valence states. The calculated values 
may be modeled by linear correlation:

  (4.4)

where the numerical values of the coefficients actually adjusts the Pauling 
(P) scale of the electronegativity, defined by the radical of the energy 
transferred in the chemical bond to the Mulliken (M) scale in which the 
electronegativity unit is the electron-volt.

Also the Mulliken scale presents an increasing complication of the elec-
tronegativity expression for the atoms involved in hybridizations, during 
their complexity.

4.2.2.2 Allred-Rochow and Gordy Scales

The Allred-Rochow scale is, after the one of Pauling, the most commonly 
used among the experimental studies and is based on the following prin-
ciple (Allred & Rochow, 1958; Allred, 1961):

PRINCIPLE EN11 (of Allred-Rochow): The electronegativity of an atom is 
given by the attraction force between the shielded nucleus and the electron 
found at a distance equal with the covalent radius and is expressed as follows:

  (4.5)

This principle states the introduction of the force concept in explaining the 
chemical bonds and in defining the electronegativity. In the last relation 
the effective charge of the shielded nucleus, , is calculated 
according to the Slater’s rules (see Section 3.4.1).

A modification of Allred-Rochow relation in the way proposed by 
Huheey , with δ the partial atomic charge of the atom in 
molecule, is insignificant in terms of concept.

Boyd and Markus, in 1981, took the concept of force in defining the atomic 
electronegativity and by nonempirical calculations reached the expression:

  (4.6)
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where ZA and rA are the atomic number and respectively the relative radius 
of the atom A, and ρ(r) is the radial density function.

A similar formalism will be developed also in this study, in order to 
adjust the electronegativity scales, in one of the next chapter sections, dif-
fering only by the physical image through which the electronegativity will 
associate, not with the force but with the respective potential.

Also in the terms of the potential image Gordy described the 
electronegativity:

PRINCIPLE EN12 (of Gordy): The electronegativity may be associated 
with the electrostatic potential which act at the distance of the shielded 
covalent radius and is given by the expression (Gordy, 1946, 1956):

  (4.7)

where Z’ is the nuclear charge shielded by Gordy’s method: the complete 
electronic layers shielding totally and the valence electrons (V) have a 
shielding factor of 0.5. Therefore, the Gordy nuclear charge, can be con-
sidered to be shielded as

  (4.8)

through which the electronegativity relation becomes

  (4.9)

It should be noted that for a Slater nuclear charge instead of the ones of Gordy, 
the electronegativity correspondence with those calculated by the Pauling`s 
method is not actually good. The Gordy numerical coefficients were thus 
calibrated in order to allow an immediate reporting to the Pauling scale.

Also basing on the idea of the electrostatic potential, St. John and 
Bloch in 1974 were introduced the atomic electronegativity in correlation 
with the orbital electronegativity for the valence orbitals,

  (4.10)

by the formula:

  (4.11)
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where X0, X1, X2 correspond to the electronegativities of the orbitals s, p, 
and d, respectively.

4.2.2.3 Sanderson Scale

The Sanderson electronegativity concept is related to the electronic com-
pactness around the nucleus, but through the very intuitive image, spe-
cific for the chemical approaches, opens the way for the concept of partial 
electric charge distributed to the atoms in molecule (Sanderson, 1983a,b, 
1986a,b, 1988a,b).

PRINCIPLE EN13 (of Sanderson): (a) The atomic electronegativity is a 
measure of the compactness of the electrons around the respective atoms, 
even if the atoms are molecular constituents. (b) The atomic electronega-
tivity is defined as the stability ratio (RS) between the electronic density of 
the isolated atom (or involved in the bond) ρ and the isoelectronic density 
of the inert atom ρ0, where

  (4.12)

with r the covalent radius and Z the of the electrons number from atom.
From the way of defining is noted the dimensionless image of the elec-

tronegativity and the bond with the Pauling electronegativities scale is ren-
dered by the bond:

  (4.13)

Sanderson had used this image of the electronegativity corroborated with 
the Principle for Electronegativity Atomic Equalization in a chemical 
compound, Principle EN5, as the average of the electronegativity of the 
compound from the constituent atoms (Principle EN6). Therefore, he had 
obtained a very simple scheme for the atomic charge calculation in molecule:

PRINCIPLE EN14: The partial charge associated to an atom in a molecule 
represents the ratio between the modification of the individual atomic elec-
tronegativity toward the molecular intermediate electronegativity and the 
variation of stability ratio of the respective atom which corresponds with 
the acquisition of the charge unit (+ or –) toward the rest of the molecule:
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  (4.14)

where (RS)A is actually the electronegativity of the atom A in Sanderson scale,

  (4.15)

The problem of determining the group electronegativity and the 
partial charges of the atoms in molecule is the stated goal of the modern 
approaches regarding the transfer electronegativity of the atoms groups in 
various and complexes molecular combinations. The results obtained by 
Sanderson are well correlated with the experimental data.

Simons et al. (1976) had also developed a dimensionless image of 
the electronegativity, based on the consideration of the mobile spherical 
orbitals of Gauss, with the following of the molecular formation principle 
(Simons et al., 1976):

PRINCIPLE EN15: For an electronic description in the Gauss orbitals, the 
chemical bond is described by those orbitals which are located between the 
atoms which form the bond and correspond to a minimum orbital energy.

Based on this principle can be defined an orbitalic factor,

  (4.16)

where RA and RB are the distances from the atoms A and B until the center 
of the bonding orbital. If fAB = 0.5, both atoms equally attract the bonding 
orbital, and if fAB < 0.5 then the atom A attract more than B. In these con-
ditions can be introduced the atomic electronegativity by the difference:

  (4.17)

in which the parameter k can be determined from the imposed conditions, 
for example .

4.2.2.4 Iczkowski-Margrave-Huheey Picture

A new approach of the electronegativity, which allows also the partial 
charges calculation of the atoms in molecule, is opened by considering 
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as a starting point the bond energy associated with the atom in cause 
(Iczkowski & Margrave, 1961; Huheey, 1978).

PRINCIPLE EN16: For an expression of the bond energy of the atom A 
written as a polynomial of the charge function, , with q = 0 for 
the neutral atom,

  (4.18)

where a, b, c, and d are constants dependent of the atom and its valence 
state, are associated to the neutral atom electronegativity, the report:

  (4.19)

Under these conditions, the electronegativity variation of the isolated atom 
becomes (Iczkowski-Margrave relation):

  (4.20)

if from the parabolic expression above are retained only the first three terms.
The linear expression in the electric charge associated with the elec-

tronegativity equalization principle (Principle EN5), allowed to Huheey 
to calculate the group electronegativity (–ABn), respectively the partial 
charges distributed to each atom in the group, by solving the system:

  (4.21)

where the second equation of the system, the charge conservation equa-
tion, is written with those values of a radical group, anionic or cationic.

The method has, beyond the simplicity of the image of the charge and 
electronegativity conservation (through equalization) within the group, 
some disadvantages.

Basically, this method do not allow the separate treatment of the isomers 
(–CH2CFH2 toward—CFHCH3, for example), do not allow a simple treat-
ment of the multiple bonds and uses the electronegativity equalization prin-
ciple in its total form, FEOE (Full Equalization Orbital Electronegativity).

A simplifying change was offered by Huheey in 1984, rewriting the 
charge relation of the electronegativity under the form:
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  (4.22)

which integrated into the system of the equalization electronegativity with 
the condition of radical group, qG = 0, allows the writing of the following 
expressions for the immediate calculation of the group electronegativity, 
of the equalized electronegativity and partial charge (Bratsch, 1984, 1985):

  (4.23)

  (4.24)

  (4.25)

where NG is the number of the atoms in the group, ni the number of identi-
cal atoms in the group with the specific electronegativity and respectively 
Ni the total number of atoms in molecule.

To exemplify this calculation, otherwise very simple and important, we 
will consider the values of the atomic electronegativity given in the Pauling’s 
Table 4.1, considering the methanol, CH3OH as working molecule:

  (4.26)

4.2.2.5 Klopman’s Picture

In 1965, Klopman formulated a picture of the atomic and group elec-
tronegativity, starting from the physical correspondent of the relation 
energy-electronegativity for the total energy of a free atom in a particular 
configuration (Klopman, 1965, 1968):

  
(4.27)
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where  is the electron i energy in the spin-orbital with the azimuthally 
quantum number l, ,   are the energies of interaction between the elec-
trons with the same, respectively with opposite, spins orientation, and δij 
is the Kronecker symbol.

It is noted that if the electrons are in the same orbital (the spins are 
necessarily opposites,  then it can be rewritten:

  (4.28)

where nA, j represents the occupancy number of the orbital j in the atom A.

PRINCIPLE EN17: For the atomic energy, expressed in terms of orbital 
occupation numbers, is associated the orbital electronegativity with the 
variation of this energy at the modification of the occupancy number of the 
orbital involved in the chemical bond.

  (4.29)

Beside, a chemical bond at equilibrium involves the orbital electronegativ-
ity equalization toward the molecular energy equalization EM, thus defin-
ing the molecular-orbital electronegativity:

  (4.30)

where  is referring to the occupancy degree of the electron i and the orbital j.
From the relation energy-electronegativity application under the form 

of the first order partial derivative, immediately results the expression of 
the orbital electronegativity such as (Klopman)

  (4.31)

which found the linear form in charge, if the properly notations are made.
Klopman had shown that its relation can be adapted in order to include 

also the hybridization characteristics of the orbitals for which the electro-
negativity is written through the algorithm:

  (4.32)
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  (4.33)

  (4.34)

  (4.35)

where Gj is a linear function which shows the p hybridization percentage 
of the orbitals j, neff and Zeff, respectively, are the effective principal quan-
tum number and the effective nuclear charge, calculated by the Slater rules 
(see Section 3.4.1); note that the constants in last equations are in Pauling 
units. Note that Slater arbitrarily defined effective principal quantum num-
ber neff = n* by the rule that the sequence of the principal quantum numbers

 n = 1, 2, 3, 4, 5, 6 (4.36a)

correspond to

 neff = n* = 1, 2, 3, 3.7, 4.0, and 4.2 (4.36b)

respectively, such that calculated atomic energies fit to experimental data.
The presented method has the disadvantage of lacking the reference 

orbitals in these equations, which are valid only if each atom uses the same 
bonding orbitals in each bond.

However, the fact that the electronegativity image is here an orbital 
one, allows the expansion of the isolated atomic electronegativity relation 
to a form which includes in a much more realistic way the intra-atomic 
electronic repulsion for the valence orbitals:

  (4.37)

relation which allows the treatment of a bond AB in a group of atoms or in 
a molecule, according to the principle of orbital equalization and charge 
conservation:
  (4.38)
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  (4.39)

4.2.2.6 Hinze-Witehead-Jaffe Picture

This image develops the concept of orbital electronegativity (Hinze & 
Jaffe, 1962, 1963a-b; Hinze et al., 1963; Hinze, 1968):

PRINCIPLE EN18: For an atom involved in bonds with the hybrid orbit-
als which compete on the chemical bond, is associated for the bonding 
electronegativity the set of orbital electronegativities, defined as follows:

  (4.40)

where E is the atom energy, qi is the negative occupancy number of the 
orbital i, 0 > qi > 2, ni mean the charges number from the considered orbital 
i and n0 has the sense that all the other occupied orbitals are maintained 
with a fixed occupancy number.

By using this physical image for an atom valence state, characterized for 
example by the wave function ψ, can be rigorously determined the orbital 
electronegativity working in the space Fock N—electronic (see Section 3.2)

  (4.41)

factorizing on the Hilbert spaces of uniparticle and vacuum

  (4.42)

  (4.43)

There are considered the independent particles and the creation and anni-
hilation operators associated as in Eqs. (3.4) and (3.5), defined on the 
vacuum states and uniparticle of the electronic space, whose completeness 
relation is given by Eq. (3.6), and where the operators satisfy the anticom-
mutation relations:

  (4.44)

  (4.45)
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  (4.46)

Under these conditions, the number of orbital occupancy in the state ψ is 
given by:

  (4.47)

and the orbital state energy

  (4.48)

is given by the extreme value expected

  (4.49)

given that

  (4.50)

It should be accentuated that the treating of the valence state requires the 
consideration of some constraints, similar to treating of the excited states, 
they not being conventional stationary states.

In this sense it will be considered an infinitesimal displacement of the 
Fock subspace of N particles to the one of (N – 1) with the aid of the anni-
hilation operator and through an infinitesimal parameter, λ.

  (4.51)

Worth remarking the actual Hinze difference respecting the Eqs. (3.13) and 
(3.14), for which it will be evaluated the expression modified by the param-
eter λ in order to characterize the orbital valence state it will be evaluated:

  (4.52)

where, for the simplicity of the calculation proceeding, one temporarily 
renounced to the orbital indices writing.

Using these relations, immediately result:

  (4.53)
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from where the concerned derivative is obtained,

  (4.54)

while for the energy variation by parametrical derivative one gets:

  (4.55)

resulting for Hinze electronegativity the expression:

  (4.56)

which gives the first form of the Hinze’s orbital electronegativity. 
Moreover, using the commutator of the Hamiltonian with the annihilation 
operator, there can be written:

  (4.57)

In this expression is expected that the first term annuls itself in two cir-
cumstances: if ψ is a proper function of the Hamiltonian or of the operato-
rial product a+a. In these conditions it can be put in other form the orbital 
electronegativity, by specifying the Hamiltonian (3.29) where the coef-
ficients of creation-annihilation operators products are respectively the 
orbital integrals of uni and bi-particle:

  (4.58)

  (4.59)

With these relations helping and also using the properties of the anti-
commutator of the electronic creation-annihilation operators, previously 
exposed, is finally obtained for the orbital electronegativity, the expression:

  (4.60)
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where the reduced elements of density matrix are given, respectively by:

  (4.61)

  (4.62)

Of course, there can be noted the fact that the orbital energy εii from the 
last relation is of n0 times higher than the conventional one, the difference 
coming from the fact that in this approach the operators Fock have not 
been normalized to the unoccupied orbital state.

The presented method can be generalized even more, if considering 
the mediation spin in addition to the spatial one in the orbital occupation 
between 0 and 2, case in which can be analogous deduced the valence state 
characterization, using the displacement between the Fock subspaces of 
particles, given by:

  (4.63)

and density operators of free spin,

  (4.64)

  (4.65)

Hinze and co-workers had also deduced the electronegativities corre-
sponding to the three types of orbital occupancies, empty orbital, and sin-
gle and double occupied, starting from an expression of the atomic energy 
analogous to its parabolic expression:

  (4.66)

for which the orbital electronegativity becomes:

  (4.67)

For the valence state of the considered orbital i, the IP and the electronic 
affinity will be written as:

  (4.68)

  (4.69)
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system from which result the coefficients that interfere in writing the 
orbital electronegativity:

  (4.70)

  (4.71)

With these expressions, it can be immediately calculated the orbital elec-
tronegativity for different occupations (Bergmann & Hinze, 1987):

  (4.72)

  (4.73)

  (4.74)

from which only the first relation corresponds to the Mulliken electro-
negativity, from the Principle EN10.

In order to determine the energy transfer on the molecular formation, it is 
applied the principle of electronegativity equalization, EN5 Principle, such as:

  (4.75)

and which represents the charges transfer Δq from the orbital i to the 
orbital j. Given the expression of the charge of the orbital electronegativ-
ity, results the transferred charge:

  (4.76)

Through this equation which the energy decreases due to the charges 
transfer and is given by:

  (4.77)

resulting the extra-ionic resonance energy (Pauling)

  (4.78)
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In these expressions the constant ci corresponds right to the chemical 
strength (in this case orbital) here defined by the presented formalism:

  (4.79)

In the situations in which the units used for the energy and potentials are 
the electron-volts, the measurement unit for the orbital strength is Volt per 
electron, i.e., the same size as the electric capacity. This analogy allows 
a better intuition of the physical—chemical significance of the chemical 
hardness in the charge transfer processes and the bonds formation.

It is natural the extension of the electronegativity concept and the 
equalization principle to which is subject, in forming the multiple bonds 
of an atom in a molecule. For this, is considered the total net charge of 
the original neutral atom with all the orbitals involved in a charge transfer 
process of Δqk with k = 1, …, m:

  (4.80)

If is focused the attention on an orbital i contribution to the bonds forma-
tion of the atom in molecule, after the direct participation to the molecular 
bond with the charge Δqi, it remains a rest charge that may engage in indi-
rect transfers in bond, by transfers to the others atomic orbitals—and, from 
there, in the molecular bond; the rest charge will be:

  (4.81)

In these circumstances, by the direct and implicit transfer, the orbital elec-
tronegativity will depend also by the rest charge:

  (4.82)

In this expression the parameters depend on the rest charge on the respective 
orbital. But for the coefficient ci(ri), can be considered the independence of 
the rest ri, through the nature of constant of the atomic or orbital species of 
the chemical hardness with which is associated. For the coefficient ci(ri), 
taking into account the specific relations previously found, it can be written:

  (4.83)



188 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

being able to propose the linear dependence on the rest of charge, as follows:

  (4.84)

  (4.85)

  (4.86)

With these, the orbital electronegativity becomes:

  (4.87)

and the principle of electronegativity equalization, Principle EN5, involves:

  (4.88)

For explaining the equations system, which will have as solutions the 
transferred orbital charges and the equalized electronegativity of the 
atomic orbitals in the molecular bond, is noted that:

  (4.89)

through which it can be written:

  (4.90)

  (4.91)

With these, the orbital electronegativities equalization becomes the proto-
type equation:

  (4.92)

By recognizing the standard orbital electronegativity:

  (4.93)

the type equations from above become:
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  (4.94)

which is the type of the searched equation. Adding one of such equation 
for each bond i > j is obtained the equations set for N unknown Δqij cor-
responding to a given molecule with N double centers located (2N atomic 
orbitals for the molecular bonds double electronic).

With all the arguments presented, it can be concluded that the image 
of the electronegativity in the Hinze–Whitehead–Jaffe approach refines 
Mulliken image, but also brings an accentuation regarding the orbital elec-
tronegativities, once with the extension of the Principle EN5 of electro-
negativity equalization to an orbital level:

PRINCIPLE EN19: For a molecular bond in which the atoms contribute 
with all the orbitals, the individual orbital electronegativities decided by 
the Principle EN18 are equalized by the multiple chemical bond and cor-
respond to a system of equations of orbital form.

The molecular electronegativity of equilibrium, respectively the indi-
vidual transferred inter-orbital charges and the energies corresponding to 
the mutual transfers, immediately result by solving this kind of system.

4.2.2.7 Quantum Semiempirical Picture

Based on the idea of orbital electronegativity introduced by Hinze–
Whitehead–Jaffe, in 1981 Ponec had introduced the orbital electronegativ-
ity based on the semiempirical approximation CNDO (“complete neglecting 
differential overlapping”, the complete neglect of the differential-orbital 
overlap even for the orbitals belonging to the same atom) (Ponec, 1981).

Thus, in the limits CNDO, which essentially means to consider only 
the diagonal integrals, the configuration energy of an atom A is written as:

  (4.95)

with Ujj the monoatomic integral representing the energy of the electron 
from the orbital j in the field of the atomic body A,

  (4.96)
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also the monoatomic repulsion integral written in the condition of local spa-
tial invariance of the orbitals system at the central rotation on the atom A:

  (4.97)

Using the expression of CNDO energy is directly calculated the ionization 
energy and the affinity for the electrons of the orbitals of atom A,

  (4.98)

  (4.99)

  (4.100)

  (4.101)

which can be summarized as:

  (4.102)

  (4.103)

where it had been noted with ZA = m + n, the charge of the atomic core A.
Combining the ionization energy and the electronic affinity in a semi-sum 
results the expression of orbital electronegativity in CNDO version:

  (4.104)

or more general,

  (4.105)

where

  (4.106)

represent the total electronic population (density) of the atom A obtained 
by summing the electronic populations (densities) from all the atom 
orbitals, without considering the overall populations (CNDO), and the 
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coefficients of cjv are the coefficients of LCAO development (“linear com-
bination atomic orbitals”) for the molecular orbitals writing

  (4.107)

Thus, the global electronegativity of the atom A in molecule can be evalu-
ated as:

  (4.108)

where pjj represents the charge density of the orbital j in the atom A.
This approach allows numerical evaluations of the orbital electronega-

tivity so by various approximations of the integrals used, as by a combi-
nation of the experimental data, for example, with the information which 
came from the X-ray analysis of the electronic distribution in molecule.

Another method, essentially empirical, was proposed by Jørgensen in 
1970, in direct correlation with the electrons transfer from the spectra of 
transition metal complexes, MX. Thus, he had established the relationship 
between the electronegativity difference (called optical) associated to the 
ligand (X) and respectively to the metal (M) and the photon energy trans-
ferred for the the electrons transfer from the metal-ligand system in the 
first Laporte band (Ponec, 1981; Mullay, 1987)

  (4.109)

While chaning the the constant, 3 × 104 cm−1 ~ 3.7 eV, the optical electroneg-
ativity of the halogens in Pauling units is obtained. The linearity relationship 
between the optical electronegativity and the difference of the proper ener-
gies of the analyzed systems can be rationalized in a theoretical approach, 
one of this possible approaches being the density functional theory.

4.2.3 QUANTUM BOHMIAN CHALLENGES FOR PARABOLIC 
CHEMICAL REACTIVITY

4.2.3.1 Subquantum Electronegativity?

The specific measure of chemical reactivity, electronegativity (χ), which 
lacks a definite quantum operator but retains an observable character through 
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its formal identity with the macroscopic chemical potential χ = −µ (Parr et al., 
1978; Parr & Yang, 1989), was tasked with carrying quantum information 
within the entanglement environment of Bohmian mechanics (Bohm, 1952; 
Bohm & Vigier, 1954; Cushing, 1994) and has thus far been identified with the 
square root of the so-called quantum potential (Boeyens & Levendis, 2008)

  (4.110)

In next we explicate such possibility with the actual refining. Actually, since 
of the need to reduce Copenhagen’s indeterminacy for quantum phenom-
ena, i.e., by associating it the quantum description of “Newtonian” forms of 
motion, though by preserving probability densities, quantum averages, etc., 
the so-called “minimalist” quantum theory may be formulated following 
the Bohm quantum mechanical program as follows (Putz, 2012a).

One begins with the general eikonal wave-function form (Bohm, 1952)

  (4.111)

which represents the mid-way between wave and particle mechanics 
because it contains both information regarding Hamilton-Jacobi theory and 
the Wentzel-Kramers-Brillouin (WKB) approximation, see the Volume I 
of the present five-volume set, through the principal phase function S(r, t) 
while preserving the amplitude relationship with the systems’ quantum 
density:

  (4.112)

In this framework, the Schrödinger equation,

  (4.113)

decomposes into real and imaginary parts, The real part can be expressed 
as follows:

  (4.114)

representing a continuous “fluid” of particles driven by the “guidance” 
momentum:

  (4.115)
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moving under a joint external potential V(r) as well as under the so-called 
quantum potential influence:

  (4.116)

The consequences are nevertheless huge. For example, this methodology 
allows for the interpretation of the trajectories orthogonal to constant sur-
faces, by canceling the Laplacian of the wave fronts

  (4.117a)

which are obtained from Eqs. (4.114) and (4.115) as the quantum equation 
of motion:

  (4.117b)

Equation (4.117) resembles the classical Newtonian acceleration-force 
relationship only in a formal way; in fact, it generalizes it: it prescribes 
acceleration motion even in the absence of an external classical potential. 
This is essential in explaining why the inter-quark forces increase with the 
increase in inter-quark distances, no matter how great a separation is con-
sidered (a specific quantum effect), due to the presence of a quantum poten-
tial that does not fall off with distance as V does. It also nicely explains the 
observed interference patterns in double-slit experiments in the absence of 
classical forces. Alike, Eq. (4.117) also appears suited for modeling chemi-
cal reactivity for the valence atoms as free particles in a virtually infinite 
potential environment to characterize their reactive behavior. In this regard, 
it is worth considering for such atoms the uniform motion by having ∂p / 
∂t = 0 through the time-constant associated wavefront condition and action 
S(r = cnst., t) = cnst (equivalent with Lagrangian constancy), in all given 
chemical space-points (atomic basins within molecule complex) (Guantes 
et al., 2004). This picture is also equivalently to have

  (4.118)

applied to Eq. (4.114). By doing so, one obtains

  (4.119)
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which can be rearranged as follows:

  (4.120)

such that the total energy of a the valence system is now entirely driven by 
the quantum potential:

  (4.121)

At this point, one can see that when turning to electronegativity and com-
bining Eq. (4.121) with DFT definition (3.1), one obtains a generalization 
of the previous Boeyens formulation (Boeyens & Levendis, 2008):

  (4.122)

which is the variation in the quantum potential with electron exchange 
under a constant classical or external potential.

However, for a quantum characterization of the valence state, we are 
interested in how the energy described by Eq. (4.121) varies under a quan-
tum potential (4.116)

  (4.123)

when the above relations (4.112) and (4.116) are substituted into 
Eq. (4.121).

It is worth noting that although we obtained the total energy (4.123) in 
the Bohmian mechanics context, it showcases a clear electronic density 
dependency, not under a density functional (as DFT would require) but 
merely as a spatial function, which is a direct reflection of the entanglement 
behavior of Bohmian theory through the involvement of a quantum poten-
tial. However, in most cases, and especially for atomic systems, Eq. (4.123) 
will yield numerical values under custom density function realizations.

4.2.3.2 Physical or Chemical Atom?

The striking difference between an atom as a physical entity, with an equal 
number of electrons and protons (thus in equilibrium), and the same atom 
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as a chemical object, with incomplete occupancy in its periphery quan-
tum shells (thus attaining equilibrium by changing accepting or releasing 
electrons), is closely related to the electronegativity phenomenology in 
modeling chemical reactivity. Moreover, this difference triggers perhaps 
the most important debate in conceptual chemistry: the ground vs. valence 
state definition of an atom (Putz, 2012a).

The difficulty may be immediately revealed by considering the varia-
tion in the total energy (of the ground and/or valence state—see below for an 
explanation of their difference) around the physical equilibrium (neutral atom) 
attained between the release (by ionization, I) and receipt (through affinity, A) 
of electrons toward chemical equilibrium (in molecules, chemical bonding). 
Accordingly, the curve passing through these points apparently only behaves 
as shown in Figure 4.3(a), while in all systems (with numerical I and A), the 
obtained interpolating curve presents a minimum toward accepting electrons, 
see Figure 4.3(b), thus confirming the electronegativity concept as a chemical 
reality, although with a predicted fractional charge (for example, the critical 
charge N*) on an atom at chemical equilibrium (i.e., not reducible/compre-
hensible to/by an ordinary physical description of atoms) (Putz, 2012a).

However, the physical-to-chemical paradox continues in an even more 
exciting fashion as follows. When, in light of the above discussion, electro-
negativity is recognized with the two-point limits shown in Figure 4.3(b), 
namely (Parr & Yang, 1989; von Szentpály, 2000)

FIGURE 4.3  The two energy curves (thick lines) for the quantum atom in: (a) the 
apparent or reactive ground state and (b) the shifted or critical ground state (Putz, 2012a).



196 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

  (4.124)

the limits represent tangents to a curve that does not describe chemical 
equilibrium but an excited state driven by the parabolic form, since com-
bining Eqs. (3.1) and (3.3) in a single energy expansion around equilib-
rium charged system

  (4.125)

which happens to correspond to the celebrated density functional theory 
(DFT) working energy expression (Parr & Yang, 1989; Ayers & Parr, 2000; 
Geerlings et al., 2003; Putz, 2003) written in terms of electronegativity 
and chemical hardness, respectively (Parr, 1983; Parr & Pearson, 1983; 
Putz, 2006, 2008a).

The point is that curve (4.125) is not chemically minimized, although it is 
very often assumed to be in the DFT invoked by the chemical reactivity litera-
ture (Chattaraj & Parr, 1993; Chattaraj & Sengupta, 1996; Chattaraj & Maiti, 
2003; Chattaraj & Duley, 2010); however, the curve cannot be considered indic-
ative of a sort of ground state (neither reactive nor critical states of Figure 4.3). 
Additionally, by comparing the curves of Figures 4.3(a) and 4.3(b), the curve 
of Eq. (4.125) occurs above both the reactive and critical curves of Figure 4.1; 
it thus should represent the chemical valence state with which to operate. 
Therefore, much caution should be taken when working with Eq. (4.125) 
in assessing the properties of atoms, molecules, atoms in molecules, etc. 
Nevertheless, this is another case of chemistry not being reducible to physics 
and should be treated accordingly. It is worth noting that Parr, the “father” 
of Eq. (4.125) and a true pioneer of conceptual DFT (Ayres & Parr, 2001; 
Kohn et al., 1996), had tried to solve this dichotomy by taking the “valence 
as the ground state of an atom in a perturbed environment.” This statement 
is not entirely valid because perturbation is not variation such that it may be 
corrected by applying the variational principle to Eq. (4.125), for example. In 
fact, using such variation should be considered a double variational technique 
that is necessary to arrive at the celebrated chemical reactivity principles of 
electronegativity and chemical hardness, as recently shown (Putz, 2011b).

The current line of work takes a step forward by employing the double 
variation of the parabolic energy curve of type (4.125) to provide the quan-
tum (DFT) valence charge of an atom (say, N**) and to compare it either 
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quantitatively and qualitatively with the chemical critical charge N*. The 
goal of these efforts is to gain new insight into the valence state and chemi-
cal reactivity at the quantum level. To this end, the relation of Bohmian 
mechanics to the concept of the golden ratio will be essential and will be 
introduced in the following.

The consequences of the joint consideration of Bohmian mechanics 
and the golden ratio for the main atomic systems will be explored, and the 
quantum chemical valence state will be accordingly described alongside 
the so-called universal electronegativity and chemical hardness, refining 
the work of (Parr & Bartolotti, 1982) as well as generalizing the previous 
Bohmian-Boeyens approach (Boeyens, 2005, 2011).

However, for practical implementation, density is considered a “gold-
mine” in current computational and conceptual quantum chemistry due 
to its link with observable quantities, energy density functionals in par-
ticular, as celebrated by DFT (Hohenberg & Kohn, 1964; Putz, 2008b). 
However, to quantitatively approach the chemical phenomenology pre-
sented in Figure 4.3, involving the ionization-to-affinity atomic descrip-
tion, the general Slater (Parr & Bartolotti, 1982) density (involving the 
orbital parameter ξ dependency) will be here employed for the first trial on 
modeling the combined Bohmian and gold-ratio features of valence atom; 
it assumes the general (trough still crude) working form:

  (4.126)

For the reactivity at the valence atomic level, or for some outer shell (n) 
considered at the atomic frontier, one may assume almost electronic free 
motion or at least electronic motion under almost vanishing nuclear poten-
tial V(r); this way the density (4.126), while entering the quantum potential 
(4.116) recovers the negative kinetic energy by the virial identity (4.120). 
Analytically, since Eqs. (4.112), (4.116) and (4.126), one has

  (4.127)

and the actual valence atomic virial realization looks like (Putz, 2012a)

  (4.128)

In the conditions of circular orbits, Eq. (4.128) leaves with the identity:

  (4.129)
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which may be seen as an orbital effective realization of the Heisenberg 
observability too (Putz, 2010a); It may be also further rewritten with the 
help of the atomic Bohr-de Broglie (2.2) relationship (see Section 2.2) to 
provide the atomic frontier radii shell-dependency

  (4.130)

Remarkably, the same result is obtained when employing a far more 
reach atomic shell structure description, namely when starting with the 
full atomic radial Schrödinger density (see also the similar forms of 
Sections 4.7.1 and 4.7.4) (Putz, 2006)

  (4.131)

and imposing the null-gradient condition (Ghosh & Biswas, 2002),

  (4.132)

in accordance with the celebrated Bader condition of electronic flux of 
atoms-in-molecules (Bader, 1990), to yield:

  (4.133)

The identity between Eqs. (4.130) and (4.133) gives sufficient support to 
the present Slater density approach Eq. (4.126) in modeling the valence 
atoms or the atoms at their frontiers approaching reactivity (i.e., atoms-in-
molecules complexes by chemical reactions).

Once convinced by the usefulness of the Slater density form (4.131) 
for the present valence atomic analysis, one will next employ it under the 
so-called Parr-Bartolotti form (Parr & Bartolotti, 1982)

  (4.134)

such that to obey the N-normalization condition, as required by DFT 
(Parr & Yang, 1989, Putz, 2011a),

  (4.135)

by applying the Slater integral recipe
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  (4.136)

It nevertheless showcases the parametric—dependency that can be 
smeared out by considering the variational procedure

  (4.137)

upon applying the total atomic energy

  (4.138)

where the components are individually evaluated within a radial atomic 
framework with the respective results for (Parr, 1972; Putz, 2003):

• kinetic energy

  (4.139)

• nucleus-electronic interaction

  (4.140)

• inter-electronic interaction

For the inter-electronic interaction, see Figure 4.4; in evaluating Vee[ξ] 
the two-electronic density is approximated by the Coulombic two mono-
electronic density product, thus neglecting the second-order density matrix 
effects associated with the exchange-correlation density. However, for the 
analytical evaluation of the electron–electron repulsion energy using the 
density (4.134), much care must be taken. For instance, one has to use 
the electrostatic Gauss theorem, which states that the classical electrostatic 
potential outside a uniform spherical shell of charge is just what it would be 
if that charge were localized at the center of the shell and that the potential 
everywhere inside such a shell is that at the surface (Parr, 1972; Putz, 2003), 
see Figure 4.4. Therefore, the electronic repulsion energy becomes
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FIGURE 4.4  Representation of the space regions of the 1st and 2nd electrons, their 
potential influences and reciprocal interaction (Parr, 1972; Putz, 2003).
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  (4.141)

Note that the electron-electron repulsion term was written by also consid-
ering the Fermi-Amaldi (N-1)/N factor (Parr & Yang, 1989; Putz, 2003), 
which ensures the correct self-interaction behavior: when only one elec-
tron is considered, the self-interaction energy must be zero, Vee (N→1)→0.

With these results, the optimum atomic parameter is quantified by the 
electronic number as follows:

  (4.142)

which immediately releases the working electronic density

  (4.143)

Having the completely analytical density in terms of number of reactive 
electrons as in Eq. (4.143), worth pointing here on the so-called sign prob-
lem relating with its variation, e.g., its gradient, the gradient of its square 
root, etc.. Although this problem usually arises in density functional the-
ory when specific energy functionals are considered in gradient forms, see 
for instance (Cohen et al., 2012), there is quite instructive discussing the 
present behavior and its consequences.

For instance, one can adapt either Eqs. (4.130) or (4.133) through con-
sidering the present form (4.142) for the orbital exponent to be (Putz, 2012a)

  (4.144)

Here, one combines the frontier and maximum atomic radii with atoms-
in-molecules phenomenology, as above indicated, to arrive to the present 
identification for the number of valence electrons possible to be involved 
in the same chemical bonding state as being Nbonding in Eq. (4.144).

Accordingly, the Figure 4.5 reveals interesting features of the present 
Slater-Parr-Bartolotti atomic density with quantum potential (Putz, 2012a):
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• the fact that the (covalent) bond length is proportional to the atomic radii 
and in inverse correlation with bonding order is well known (Petrucci 
et al., 2007), and this it is also nicely reflected in Eq. (4.144); however, 
changing the sign to negative radii as surpassing the threshold 21/5 and 
fixing in fact the limit Nbonding = 4, is consistent with maximum bond 
order met in Nature; it is also not surprising this self-released limit con-
nects with golden ratio by the golden-spiral optimization of bond-order 
(Boeyens & Levendis, 2012); more subtle, it connects also with the 
4π symmetry of two spherical valence atoms making a chemical bond 
(Figure 4.5, inset): such “spinning” reminds of the graviton symme-
try (Hawking, 2001) (the highest spherical symmetry in Nature, with 
spin equal 2) and justifies the recent treatments of chemical bonding by 
means of the quasi-particles known as bondons (Putz, 2010b; Putz & 
Ori, 2012), as well as the use of the 4D complex projective geometry in 

FIGURE 4.5  Representation of the bonding length as a function of bonding electrons 
from valence atoms in molecule(s), based on Eq. (4.144), while marking the double golden 
ratio 2τ gap between the bonding lengths of the second and third order, as well as the 
forbidden chemical bonding region for Nbonding ≥ 21/5 for the electrons participating in the 
same bonding. Further connection of chemical bonding and the 4D space to model it is 
suggested by the inset picture illustrating the 2-fold (4π) spinning symmetry of the adduct 
atom respecting the bonding direction (Putz, 2012a).
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modeling the chemical space as a non-Euclidian one, eventually with a 
time-space metrics including specific “gravitational effects” describing 
the bonding (Boeyens & Levendis, 2012);

• the “gap” between the atomic systems contributing 2 to 3 electrons 
to produce chemical bond is about double of the golden ratio

  (4.145)

therefore, this gap marks the passage from the space occupied by a pair 
of electrons and that required when the third electron is added on the 
same bonding state: it means that the third electron practically needs one 
golden measure (τ) to (covalently) share with each of the existing pair-
ing electrons, while increasing the bond order to the maximum three; 
it is therefore a space representation of the Pauli exclusion principle 
itself, an idea also earlier found in relation with dimensionless repre-
sentation of a diatomic bonding energy (2τ) at its equilibrium bonding 
distance (τ)(Boeyens, 2010); when the fourth electron is coming into 
the previous system, in order the maximum fourth order of bonding to 
be reach the chemical bonding space is inflating about five times more, 
yet forbidding further forced incoming electrons into the same space of 
bonding state as the bonding radius becomes negative in sign.

Having revealed the chemical bonding information carried by the density 
(4.143) when considered for combined valence atoms-in-molecules, it is next 
employed on energetically describing the atomic reactivity as a propensity for 
allowing electronic exchanging and bonding. As such, it leaves the total quan-
tum (Bohmian) energy in Eq. (4.123) with the compact form (Putz, 2012a)

  (4.146)

Note that the actual working total energy is not that obtained by replacing 
the density (4.143) in Eqs. (4.139)–(4.141) and then in total energy (4.138) 
because here the double-variational procedure was considered; that is, the 
first optimization condition was considered as in Eq. (4.137), and the result-
ing (optimum) density (4.143) was then employed in the quantum energy 
(4.123), which in turn was obtained by applying the variational Eq. (4.118) 
to the perceived phase transition in the Bohm eikonal wave-function 
(4.111). To emphasize the accuracy of Eq. (4.123) over that of Eq. (4.138) 
with density (4.143), when one considers the last case, Eq. (4.138) yields 
the following non-quadratic form for energy (Putz, 2012a):
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  (4.147)

which is not appropriate for describing the valence state of an atom, as 
Eq. (4.125) prescribes, despite being similar in form to the Bohmian-based 
result of Eq. (4.146). Thus, the previous limitation of the Parr-Bartolotti 
conclusion (Parr & Bartolotti, 1982) and the paradox raised in describing 
the valence (parabolic) state with the optimized atomic density (4.143) are 
here solved by the double (or the orthogonal) variational implementation, as 
recently proved to be customary for chemical spaces (Putz, 2011b). In the light 
of this remark one may explain also the sign difference between the “physical” 
energy (4.147) and that obtained for the “chemical” situation (4.146): through 
simple variational procedure for “physical” energy (4.138) the result (4.147) is 
inherently negative—modeling systems stability in agreement with the upper 
branch of Eq. (2.9), whereas the double variational algorithm employing opti-
mized density (4.143) into the Bohmian shaped energy (4.123) it produces 
the positive output (4.146) associated with activation energy characteristic for 
chemical reactivity corresponding to the lower branch of Eq. (2.9).

Therefore, to be accurate, one should consider the quantum potential 
related optimized energy (4.146) instead of simply the orbital optimized one 
of Eq. (4.147). Therefore, assuming that Eq. (4.146) appropriately describes 
the atomic valence state in DFT (see the upper/reactive curve in Figure 4.1b), 
the next task is to search for the quantum valence charge for which the 
valence energy approaches its optimum value (or the “ground state” of the 
atomic chemical-reactivity, i.e., the previously golden-ratio quantification of 
the valence atomic state); to this aim, at this point, one can employ the golden 
ratio relationship (2.7) and first rewrite Eq. (4.146) as (Putz, 2012a)

  (4.148)

which is minimized at the value

  (4.149)

However, one must again apply the double-variational procedure, now 
in terms of number of electrons, i.e., reconsidering Eq. (4.149) with the 



Periodicity by Peripheral Electrons and Density in Chemical Atom 205

golden ratio at the reactive (chemical) electronic level of Eq. (2.9) such 
that a second equation is formed

  (4.150)

with the positive solution (Putz, 2012a)

  (4.151)

This expression avails of the significance of the maximum number of elec-
trons, for a given atom, possibly engaged in a reactive environment by 
either (or both) accepting or (and) ceding electrons to or from its valence 
state, see Table 4.2.

The result of this process is different from the expected physical result 
(NSTABIL = Z) according to the upper branch of Eq. (2.9), which is higher 
than the physical one until reaching the carbon system (ZINTERCHANGE = 6.8), 
while continuing below it thereafter (see Figure 4.6).

The above interchange (effective) atomic number through which the chem-
ical (reactive) state is associated with lower charge respecting the physical state 
may be also be found at the energetic level based on quantum equation (4.143), 
as specialized for the two branches of Figure 4.6 for the N(Z) dependence. 
Thus, the chemical (reactive) state takes the analytic form (Putz, 2012a)

  (4.152)

and interchanges with the ground state EQ1 (NSTABLE → Z) at the points 
{3.5, 6.8}, as observed also from Figure 4.7; however, the interchanging 
point beyond which all chemical atomic systems are more stable in the 
chemical or reactive state than in the physical ground state is consistently 
recovered.

Nevertheless, the energetic analysis also reveals the atomic systems 
Be, B and C to be situated over the corresponding physical stable states; 
this may explain why boron and carbon present special chemical phe-
nomenology (e.g., triple electronic bonds and nanosystems with long 
C-bindings, respectively), which is not entirely explained by ordinary 
physical atomic paradigms (March, 1991; Wentorf, 1965; Eremets et al., 
2001; van Setten et al., 2007; Widom & Mihalkovic, 2008; Putz, 2011c).
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TABLE 4.2  Synopsis of the Critical Charges in the Physical Ground State (N*) As Well 
As for Chemical Reactive (Valence) State (N**) for Atoms of the First Four Periods of 
the Periodic Table of Elements, As Computed From the Minimum Point of Associated 
Interpolations of Ionization Potential (IP) and Electronic Affinities (EA) (Parr & 
Bartolotti, 1982) and of Eq. (4.151), respectively (Putz, 2012a)

Atom Z IP [eV] EA [eV] N* N**

H 1 13.595 0.7542 0.558735 0.607681
Li 3 5.390 0.620 0.629979 0.516636
B 5 8.296 0.278 0.534672 0.830952
C 6 11.256 1.268 0.626952 0.387488
O 8 13.614 1.462 0.620309 0.375636
F 9 17.42 3.399 0.742422 0.823043
Na 11 5.138 0.546 0.618902 0.648699
Al 13 5.984 0.442 0.579755 0.402127
Si 14 8.149 1.385 0.70476 0.757049
P 15 10.484 0.7464 0.576651 0.0995049
S 16 10.357 2.0772 0.750876 0.430724
Cl 17 13.01 3.615 0.884779 0.751744
K 19 4.339 0.5012 0.630596 0.366618
V 23 6.74 0.526 0.584648 0.505999
Cr 24 6.763 0.667 0.609416 0.774976
Fe 26 7.90 0.164 0.5212 0.296616
Co 27 7.86 0.662 0.59197 0.549908
Ni 28 7.633 1.157 0.67866 0.798551
Cu 29 7.724 1.226 0.688673 0.0427917
Se 34 9.75 2.0206 0.761417 0.205262
Br 35 11.84 3.364 0.896885 0.427249
Rb 37 4.176 0.4860 0.631707 0.861904
Zr 40 6.84 0.427 0.566584 0.492423
Nb 41 6.88 0.894 0.649348 0.697305
Mo 42 7.10 0.747 0.617582 0.899704
Rh 45 7.46 1.138 0.680006 0.492856
Pd 46 8.33 0.558 0.571796 0.686153
Ag 47 7.574 1.303 0.707782 0.87736
Sn 50 7.342 1.25 0.705187 0.439089
Sb 51 8.639 1.05 0.638358 0.622567
Te 52 9.01 1.9708 0.779975 0.804255
I 53 10.454 3.061 0.91404 0.984204
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The energetic discourse may be complete with the electronegativity 
and chemical hardness evaluations by applying the DFT definitions (3.1) 
and (3.3) to physical and chemical energies, respectively. In the first case, 
expression (4.147) is applied to provide the following so-called “univer-
sal” forms of (Parr & Bartolotti, 1982):

  (4.153)

  (4.154)

The result, nevertheless, appears to be an unusually higher increase in 
chemical hardness than in electronegativity, which certainly cannot be 
used to model a reactive-engaged tendency because it is more stable 
(by chemical hardness) than reactive (by electronegativity); it is, however, 
consistent with the physical stability of the system, provided by the single 
variational procedure through which Eq. (4.147) was produced.

FIGURE 4.6  The comparative shapes of the valence electrons to be engaged in chemical 
reactivity (continuous curve) computed using Eq. (4.151) based on the combined optimal 
Bohm total energy (4.148) with the golden ratio imbalance of Eq. (2.9), respecting the stable 
physical case (dot-dashed curve), and of their differences (dashed curve); all originate at 
the 0th atom (the neutron, Z=0) (Putz, 2012a).
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FIGURE 4.7  The same comparative shapes shown in Figure 4.6, here at the level of 
energy (4.146) specialized for the reactive and the stable N(Z) dependencies of Figure 4.6; 
the various plots successively display increasingly large atomic Z-ranges to better 
emphasize the chemical vs. physical behavior (see text) (Putz, 2012a).
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Instead, to chemically model reactivity, the double variation procedure 
is applied and Eq. (4.146) is substituted into Eqs. (3.1) and (3.3), though 
by considering also the double reactive procedure for charge as well, i.e., 
by considering Eq. (4.151) with the golden ratio information of (2.9) to 
respectively yield the results (Putz, 2012a),

  (4.155)

  (4.156)

Remarkably, the actual electronegativity of Eq. (4.155) obtained by the 
quantum Bohm and golden ratio double procedure yields sensible results 
similar to those of the single variational approach (4.153); however, the 
chemical hardness of Eq. (4.156) is approximately 5-fold lower than its 
“stable” counterpart (4.154), affirming therefore the manifestly reactive 
framework it produces—one described by a quadratic equation (4.146) 
instead of a cubic one (4.147).

4.2.3.3 Chemical Reactivity by Charge Waves

One considers the chemical reactivity discussion as based on the gauge 
reaction that equilibrates the chemical bond by symmetrical bond polari-
ties (Putz, 2006)

  (4.157)

such that the reactive electrons are varied on the reunited intervals of 
Eq. (4.124); such analysis was previously employed to fundament system-
atic electronegativity and chemical hardness definitions by the averaging 
(through the integration) factor

  (4.158)
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along the reaction path accounting for the acidic (electron accept-
ing, 0 ≤ N ≤ +1) and basic (electron donating, –1 ≤ N ≤ 0) chemical 
behaviors.

In this scaled (gauge) context of reactivity, the foregoing discus-
sion is dedicated to investigating the link between the critical ground 
state charge (N*) and the valence or reactive state (N**). While the 
first appears as a consequence of naturally fitting the three points in 
Figure 4.3 (the ionization, neutral and affinity states), with the effect of 
biasing the minimum of the energetic curve in Figure 4.3b with respect 
to the apparent Parr-DFT curve in Figure 4.3a, and is thus derived 
graphically (see Figure 4.8), the valence charge is based on the com-
bined quantum energy and golden ratio information in Eq. (4.151). Both 

FIGURE 4.8  A graphical interpolation for selected elements of Table 4.2 in terms of 
their ionization, neutral and affinity states, aiming to determine the critical (displaced) 
charge of the DFT ground state, as prescribed by Figure 4.3b (Putz, 2012a).
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are reported for the indicated number of atomic systems of the peri-
odic table of elements in Table 4.2. One notes, for instance, that while 
the critical ground state charge N* always lies in the range [0.5, 1], 
the valence charge N** may span the interval [0, 1]; one may interpret 
such behavior as being associated with the difference between the frac-
tion ½ and integer “1” in driving the principles of chemical reactivity, 
actually by relaxing the normalization to acid-base behavior interval, 
being such scaling equivalent with above acidic-basic gauge averaging 
of Eq. (4.158), see Eq. (4.158) of Section 4.1.3.3 as well as the discus-
sion of Eq. (4.252) in Section 4.4. This way, the valence charge problem 
may be extended to the interval [0,2], at its turn seen as a gauge trans-
formation of the chemical reactivity charge domain [–1, +1], where one 
reencounters the challenging problem of whether the “One electron is 
less than half what an electron pair is” (Ferreira, 1968), the response to 
which is generally complex but may here be approached through the 
following steps (Putz, 2012a).

First, by employing the data presented in Table 4.2, one constructs 
the so-called “continuous” ground and valence charge states by appro-
priately fittingw over the first four periods of elements, here restrained to 
10th-order polynomials. This is performed by interpolating every three 
points of the 32 elements presented in Table 4.2, although by spanning 
the atomic number range Z ∈ [1, 53], thus yielding (see also the allied 
representations of Figure 4.9) (Putz, 2012a):

  (4.159)

  (4.160)
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Equations (4.159) and (4.160) are then combined into a sort of special 
charge wave function based on their difference on the golden ratio scale 
(see Figure 4.9 for graphical representation)

  (4.161)

with the peculiar property that its square-integrated form over the Z-range 
of interpolation gives

  (4.162)

FIGURE 4.9  The critical ground state and valence charge points for the elements of 
Table 4.2 and their 10th-order continuous interpolations according to Eqs. (4.159) and 
(4.160) (Putz, 2012a).
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The result of Eq. (4.162) has the following conceptual fundamental quan-
titative interpretation: the difference between the ground and valence opti-
mum charges is regulated by the golden ratio scale, or in other terms,

  (4.163)

such that it provides a sort of normalization corrected by the golden ratio 
value; it also fulfills the interesting relationship:

  (4.164)

In any case, the present analysis provides the qualitative result that the 
difference between the critical ground state and optimal valence charges 
is more than half of an electronic pair, giving rise to the significant notion 
that chemical reactivity is not necessarily governed by a pair of electrons 
but governed by no less than half of a pair and is related to the golden ratio.

However, fractional values in general and those related to the golden 
ratio particular, may be interpreted as a consistent manifestation of the 
quantum mechanical (i.e., wave functional) approach of chemical phe-
nomena, here at the reactivity level. Moreover, the quadratic critical 
charge function (4.161), as shown in Figure 4.10, clearly reveals that a 
higher contribution to electronic pair chemistry is given by the third period 
of elements and by the third and fourth transitional elements in particu-
lar, a result that nicely agrees with the geometrical interpretation of the 
chemical bond, particularly the crystal ligand field paradigm of inorganic 
chemistry (Bader, 1990).

Also a local analysis of the type of charge that is dominant in atomic 
stability, i.e., the critical physical ground state or the chemical valence 
reactive state based on Eqs. (4.159) and (4.160), respectively, may be of 
considerable utility in refined inorganic chemistry structure-reactivity 
analysis. To the same extent, it depends on the degree of the polynomi-
als used to interpolate the critical and valence charges over the concerned 
systems; however, through the present endeavor, we may assert that the 
analysis should be of the type (4.163), which in turn remains a sort of inte-
gral version of the imbalance equation (2.5), in this case for the ground-
valence charge states of a chemical system (Putz, 2012a).
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4.3 CHEMICAL REACTIVITY BY SOFTNESS DENSITY 
FUNCTIONAL THEORY

4.3.1 CHEMICAL HARDNESS-SOFTNESS DENSITY RELATED 
HIERARCHIES

The essence of the density function theory consist in writing the 
total energy of an N-electronic system as a function of the electronic 

FIGURE 4.10  The linear and quadratic charge “wave function” of Eq. (4.161) (Putz, 2012a).
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density function of the fundamental state associated to the system 
(Kohn et al., 1996):

  (4.165)

where V is the extern potential apply to the electrons system (as example, 
the nucleus potential). The measurement FHK [ρ] is the universal functional 
Hohenberg-Kohn (exactly analytically unknown as a density functional) 
expresses as a sum of the functional density of the kinetic and electronic 
repulsion energy:

  (4.166)

and ρ(r) is the unielectronic effective density (spin free) expressed in 
terms of the system wave function (Parr, 1983):

  (4.167)

with dτi = dsidri(ri ∈ ℜ) as being the volume space—spin element, and the 
N number seen also as a functional density

  (4.168)

The univocal relationship between the external potential applied to the 
electronic system and the electronic density is assured by the Hohenberg-
Kohn theorems (Hohenberg & Kohn, 1964). Besides, one of the theorem 
also state the inequality between the energy as a functional density of a 
random electronic state E[ρ′] and the corrected energy of the fundamental 
electronic state of the system E[ρ]:

  (4.169)

inequality equivalent with the existence of the stationary equation:

  (4.170)

where μ is the Lagrange multiplier associated to the electrons total num-
ber from the system. For the right density of the fundamental state the μ 
multiplier represent the chemical potential associate to the system and is 
expressed by the functional derivate:
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  (4.171)

which can de reduced, from the stationary principle (4.170), to a partial 
derivative respecting the electrons number from the fundamental state:

  (4.172)

and which, besides, is associating with the electronegativity with changed 
sign: μ = −χ (Parr et al., 1978). By calculating the functional derivative 
respecting the external potential V(r) in Eq. (4.165), there is obtained:

  (4.173)

from where, along with the relation (4.172), the total difference of the 
functional energy (4.165), E = E(N,V), it can be expressed under the gen-
eral form (Ayers & Parr, 2001):

  (4.174)

This is the first equation of the chemical transformation in TFD, because 
it correlate the total energy variation of an electronic state (atomic or 
molecular) with the charge exchanged to which is compiled, and with the 
potential variation which governed the electronic state. By applying the 
Maxwell relations to the equation results the next row of identities which 
define the Fukui functions f(r):

  (4.175)

Analogously, it can be expresed the total diferention of the chemical 
potential it can be expressed as a function of the electrons number from 
the system and the applied external potential:

  (4.176)

In the second term from the right of Eq. (4.176), it can be recognize the 
identity (4.175), and the prime term from the right of Eq. (4.176) is recog-
nized as the chemical hardness associated to the electronic system, accord-
ing to the definitions from the Sections 3.2 and 4.2:
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  (4.177)

With relations (4.175) and (4.177) the total differential can be rewritten in 
the form (Ayers & Parr, 2000):

  (4.178)

This is the second equation of the chemical transformations in DFT, 
equivalent with the first one, (4.174), but rewritten on another level. The 
Eq. (4.178) correlate the chemical potential change (the electronegativity 
with reverse sign) of an electrochemical state (atomic, molecular) with 
the charge change and with potential modification, through the chemical 
hardness on this variation, and of the Fukui frontier function, having a 
promoting role of the frontier orbital charge variation.

With relation (4.171) in (4.165), a new Euler-Lagrange equation of the 
electronic system is obtained, involving the chemical potential

  (4.179)

equation which satisfies also the differential form (4.178).
These are the chemical transformations equation, in terms of functional 

densities which will be employed and transformed in order to be applied in 
describing the open electronic evolution systems and of their participation 
to the chemical reactions.

Next the connection between the local and global sensitivity indices 
on the DFT will be exposed in a manner which should allow an explicit 
implementation of the electronic densities. It is start from a generalized 
form of the Euler-Lagrange equation (4.165):

  (4.180a)

through which minimization,

  (4.180b)

in report with the electronic density for the external fixed potential, it is 
obtaining a relationship equivalent with the expression (4.179):
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  (4.181)

For an open electronic system found under the influence on the potential

  (4.182)

which satisfy the Eq. (4.181), are defining in analogy with Eq. (4.177), but 
in functional manner (De Proft et al., 1997; Gázquez et al., 1990; Berkowitz 
& Parr, 1988; Senet, 1996, 1997), the chemical hardness nucleus associ-
ated to the system:

  (4.183)

and the local chemical hardness for the considered system:

  (4.184)

By the way of defining the potential u(r) it can be remarked how this 
include all the system properties: those connected to the external poten-
tial V(r) in which evolves, and also those characterized by the chemical 
potential, the electronegativity with reverse sigh of the system. If there is 
the functional derivative of the electronic density ρ(r) in report with u(r):

  (4.185)

this existence allow the introduction of a new measurements which char-
acterize an electronic system (open).

It can be defined the chemical softness kernels associated to the elec-
tronic system:

  (4.186)

and the local chemical softness characterized to the electronic system:

  (4.187)

If we combine the definition relations (4.183), (4.184), (4.186), (4.187), 
it can be obtained also the bonding relation between the introduced mea-
surements. It is considered the integer-deferential identity:
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  (4.188)

whit which help, if it is considered the (4.183), (4.186), it can be obtain the 
equivalent expression:

  (4.189)

From this relation it is concluded that, the chemical softness and hardness 
nucleus for a considered electronic system are inverse measurements. The 
relation (4.189) can be written also on another localization level; when 
it is multiplied with ρ(r"), the result it is then integrated upon r” and the 
Eq. (4.184) is taking into consideration-one obtains:

  (4.190)

from where, following the further integration upon x while taking into 
account of Eq. (4.187), the next identity can be written:

  (4.191)

Besides, also other relations can be obtained if the transformation succes-
sion is considered:

  (4.192)

If the Eq. (4.178) it is taken into consideration under the form:

  (4.193)

the expression (4.192) will also the form:

  (4.194)

Note that the factor “2” appearing in above equations is due to the chemi-
cal hardness definition bearing “1/2” in the custom definition (3.3) and 
can be skipped (as will be done below) when the chemical hardness will 
be considered as not-normalized to its acid-base behavior, see Eq. (4.158) 
of Section 4.2.3.3 as well as the discussion of Eq. (4.252) in Section 4.5.
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A general expression of the electronic density variation (in a physical-
chemical process) can be written also from the functional dependency 
ρ = ρ[N,V] correlated with the way of defining the Fukui function (4.175):

  (4.195)

By comparing the expressions (4.194) and (4.195) there are obtaining the 
identities:

  (4.196)

In the second identity (4.196) it was practically introduced the definition of 
global chemical softness S, and can be further used in writing the relations

  (4.197)

  (4.198)

The relations (4.197) and (4.198) are very important because they cor-
relate the sensitivity descriptors on the density functional level with the 
linear response function k(r,r').

4.3.2 LONG-RANGE LOCAL-TO-GLOBAL BEHAVIOR

Given the form of the linear response kernel of Eq. (4.198) (Ayers, 2001; 
Sablon et al., 2010; Yang et al., 2012) one has the problem to formulate 
the local form of the softness kernel s(r,r') fulfilling the Berkowitz-
Ghosh-Parr relationship (4.197) (Berkowitz et al., 1985; Berkowitz & 
Parr, 1988) within conceptual DFT. To this aim one starts with rearrang-
ing the Eq. (4.198) as an integral form along the chemical reaction path 
(Putz & Chattaraj, 2013)

  (4.199)

with the finite general result

  (4.200)
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Observe, for instance, that when integrating both sides of Eq. (4.200) with 
respect to “r,” one may use the fundamental DFT normalization constraint 
(4.168) that along the integration result of Eq. (4.198) leaves with the use-
ful constrain

  (4.201)

which correctly establishes the charge conservation condition, ∆N = 0, in 
the chemical reaction/transformation course. However, when specialized 
to valence picture of chemical reactivity, one may use for Eq. (4.200) the 
“nucleus-to-valence state” settings

  (4.202a)

  (4.202b)

so that the working form of the so-called valence or long-range density 
solution albeit approximately is obtained

  (4.203)

Actually, the entire present development stays under the valence or long-
range regime of electrons in atoms and molecules in various forms and 
approximations of conceptual DFT. The minus sign in Eq. (4.203) agrees 
with the opposite phenomenological behavior in density and potential 
variation, as provided by Poisson equation—for instance (Putz et al., 
2005), and is in accordance with alternative derivation based on chemical 
action principle and virial theorem (Putz, 2009a).

Next, one uses the integral linking the hardness and softness kernels 
through the reciprocity relation of Eq. (4.189) without the chemical hard-
ness factor (“2” vs. “1/2”), see Eq. (4.158) of Section 4.2.3.3 as well as the 
discussion of Eq. (4.252) in Section 4.5

  (4.204)

to be integrated to the actual chemical hardness free factor version of 
Eq. (4.190)

  (4.205)
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through employing the local vs. kernel chemical hardness hierarchy 
(4.184). Note that Eq. (4.184) may be seen as a special case of a general 
integral

  (4.206)

involving the shape form of the Fukui function (Funtealba, 1998)

  (4.207)

Worth noting that despite shape function is conceptually different from 
the genuine Fukui function (4.175) they both fulfill the normalization 
condition

  (4.208)

in the light of above DFT density constraint, Eq. (4.168). Yet, one should 
be warned the dichotomy of shape function vs. Fukui function may be 
regarded as another manifestation of the long-range vs. general elec-
tronic density behavior, respectively, and corresponds with the (inherently 
ambiguous) local frontier chemical hardness believed to behave as a global 
quantity (Parr & Bartolotti, 1993; Ayers, 2000; Ayers & Parr, 2008a); this 
was ultimately extended through the softness relationship with exchange-
correlation density and (global) electronegativity (Matito & Putz, 2012), 
while the direct chemical hardness long-range behavior and consequences 
will be analyzed below.

Now, by comparing Eqs. (4.203) and (4.205) another relationship 
between linear response and softness kernels is obtained, namely

  (4.209)

Together, Eqs. (4.197) and (4.209) it gives the hint for considering the 
actual symmetrical long-range local form for the softness kernel (Putz & 
Chattaraj, 2013):

  (4.210)
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It fulfills also the kernel softness condition by reducing to s(r)s(r')/S in the 
long-range (electrostatic) interaction when one has approximately

  (4.211)

The long-range consistency of local chemical hardness (4.211) with soft-
ness kernel (4.210) may be proved also by checking the key softness hier-
archy condition in passing from kernel to local dependency:

  (4.212)

through considering both the long-range chemical hardness limit (4.211) 
and the consecrated local to global softness integral constraint as appeared 
from (4.196) with (4.208):

  (4.213)

All in all, the long-range related softness kernel (4.210) fulfills the main 
new softness conditions as follows (Pérez et al., 2008)

 I. Is symmetric with respect to exchange of its coordinates r ↔ r', 
by construction;

 II. It converges to s(r)s(r')/S when for each terms of (4.210) the elec-
trostatic (long-range) regime is considered through the condition 
(4.211);

 III. It attains the hierarchy from non-local to local quantities in the 
long-range regime (4.211).
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4.3.3 ANALYTICAL CHEMICAL SOFTNESS BY DENSITY AND 
APPLIED POTENTIAL

4.3.3.1 Translational Chemical Softness

By the way in which the local sensitivity descriptors were introduced, it 
can de seen the importance of the universal Honenberg-Kohn functional 
F[ρ]. It still can be developed a method which avoid this dependency 
(Garza & Robles, 1993), having in mind that an exact analytic expression 
of this functional is not (yet) known. This inconvenient can be transpose 
in the unrecognizing the exact functional relation between the electronic 
density ρ(r) and the global potential u(r), and this new inconvenience can 
be eluded by considering the translational invariance of the external poten-
tial applied to the electrons system, respectively of the density of them in 
atomic or molecular system. The explicit bound between those types of 
variations (of the global potential and of the electronic density), for an 
open system can took the forms:

  (4.214)

  (4.215)

These relations can be re-transcribed in the virtue of expressions (4.183) 
and (4.186) so that:

  (4.216)

  (4.217)

The expression (4.216) can be easily developed if is considered the chemi-
cal softness nucleus as being de(compose) (in) by a local contribution L(r) 
and a nonlocal contribution of the type:

  (4.218)

whit which help the relation (4.216) becomes:

  (4.219)
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The last term from Eq. (4.219) identically vanishes by the virtue of

  (4.220)

and of the Hellmann-Feynman theorem. So that the local contribution L(r) 
will be given by the form:

  (4.221)

in order to determine the nonlocal contribution it will be firs evaluate the 
chemical softness (4.218) on different localization levels, by successively 
integrations, meaning:

  (4.222)

  (4.223)

Now the expression (4.198) can be as well evaluated with the result:

  (4.224)

If the number of the system electrons N is fixed, from the normalization 
condition of the linear response function in Eq. (4.201) applied to relation 
(4.224), one will obtain the integral equation:

  (4.225)

with the simple solution t(r) = ρ(r). With this result, the expression of the 
chemical softness nucleus will have the functional form:

  (4.226)

From now on, the analytically implementation is immediate, for an expres-
sion of an atomic or molecular electronic explicit density.
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4.3.3.2 Long-Range Chemical Softness

For practical implementation we provide further softness and chemical 
hardness dependence on the electronic density and potential, alternatively 
to Eq. (4.226). To this aim we use a local-nonlocal ansatz for softness 
kernel within the present long-range/shape function approximation of 
Eq. (4.207), namely as (Garza & Robles, 1993; Putz, 2009a)

  (4.227)

so that the local softness immediately turns out to be by Eq. (4.187)

  (4.228)

while the global softness (4.213) becomes

  (4.229)

For the local hardness determination one may use the identity, somehow 
similar with that of Eq. (4.196), yet here at the complete local level, namely

  (4.230)

Equation (4.230) can be proved within long-range density interaction by 
starting from Eq. (4.205): its integral over “r“ coordinate is taken first, 
then, by using the basic DFT constraint (4.168) and kernel-to-local soft-
ness integral relationship (4.213) one arrives at the “1/2-chemcial hard-
ness” modified form of Eq. (4.191), as

  (4.231)

with which occasion the frontier normalization (4.208) was also consid-
ered on its right hand side; this way the relationship (4.230) is roughly 
recovered by equating integrands on the left and right sides.

This way, Eq. (4.230) allows the local chemical hardness in the den-
sity-potential formulation:

  (4.232)
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Note that Eq. (4.232) can be rearranged so that it can be compared with 
Eq. (4.211) that is (Putz & Chattaraj, 2013)

  (4.233)

so that it really tends to Eq. (4.211) under the long-range regime of van-
ishing potential and/or the number of electrons, so proving the reliabil-
ity of the presented working form and softness density functional based 
formalism at large.

4.4 ELECTROPHILICITY: LONG RANGE CHEMICAL SOFTNESS 
FORMULATION

Since most of the chemical reactions may be characterized in terms of 
electrophilic/nucleophilic action of charge transfer through accepting/
donating electrons, the concept of electrophilicity (Chattaraj & Sarkar, 
2006) becomes essential and its quantification (Parr et al., 1999), espe-
cially within the DFT, see (Parr & Yang, 1989; Geerlings et al., 2003), 
has been considered to be important mainly due to its reliability in mod-
eling a variety of physico-chemical phenomena such as site selectivity 
(Pérez et al., 2002; Chamorro et al., 2003), molecular vibrations and rota-
tion (Parthasarathi et al., 2005), intramolecular and intermolecular reactiv-
ity patterns (Domingo et al., 2002a,b), solvent and external field effects 
(Meneses et al., 2006; Torrent–Sucarrat et al., 2008, 2010; Gál et al., 2011) 
as well as biological activity and toxicity (Miller & Miller, 1977; Ashby 
& Tennant, 1991; Parthasarathi et al., 2004, 2005; Padmanabhan et al., 
2006a,b; Rong et al., 2007; Roy et al., 2007). The definition of electrophi-
licity relies on two other basic chemical concepts, viz., as electronegativ-
ity (χ) and hardness (η) as follows (Putz & Chattaraj, 2013)

  (4.234)

where the second form employs the reciprocal relationship between global 
chemical hardness and softness (S) (Parr & Yang, 1989). However, the first 
form of Eq. (4.234), comes through an electrostatic correspondence with 
potential and resistance (Parr et al., 1999), respectively, thereby providing 



228 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

electrophilicity the meaning of the “power” of attracting electrons by an 
electrophile. However, due to the discontinuity in the energy (E) vs. num-
ber of electrons (N) curve (Perdew et al., 1982; Ayers, 2008), separate elec-
trophilicity indices for charge donation (ω+) and charge acceptance (ω−) 
are introduced (Gazquez et al., 2007). This picture is extended to the local 
electrophilicity by connection with Fukui function (Parr & Yang, 1984) 
f(r), for the nucleophilic (+), electrophilic (–), and radical (0) attacks to 
model respective local electrophilicities ω(+,–,0) = ωf(+,–,0) which may in turn be 
condensed to a specific site in a molecule (Chattaraj et al., 2003; Funtealba 
& Parr, 1991; Geerlings & De Proft, 2008; Cárdenas et al., 2009; Senet, 
1996). Any local function ω(r) which integrates to ω may be considered to 
be a candidate for local electrophilicity. Projection via f(r) is in the spirit 
of the definition of local softness. Therefore, there remains an open field 
to assess a continuous analytical form for the local electrophilicity, ω(r), 
as well as for its kernel version, ω(r,r'), and to explore the consequences 
from atoms to molecules in the light of global elemental periodicity and of 
chemical reactivity principles of electronegativity and chemical hardness 
(Parr & Zhou, 1993; Chattaraj & Maiti, 2001), respectively.

In this context, we can make a step forward in advancing general recipe 
for developing local and kernel electrophilicity forms in terms of local 
softness s(r) and kernel softness s(r, r') measures of a chemical species 
as follows

  (4.235)

  (4.236)

being consistent with global electrophilicity index through the integral 
relationships

  (4.237)

according to the associated softness kernel hierarchy (Berkowitz 
et al., 1985). The local electrophilicity ω(r) is formally same as that 
defined in Chattaraj et al. (2003) while there are presumably even higher 
order local electrophilicities, e.g., the hierarchy of hypersoftness and 
hyperhardness kernels (Ayers & Parr, 2008b), within higher-order concep-
tual DFT developments (Chattaraj et al., 2003; Funtealba & Parr, 1991; 
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Geerlings & De Proft, 2008; Cardenas et al., 2009; Senet, 1996). One 
may obtain a condensed-to-atom variant and also for the electrophilic, 
nucleophilic and radical attacks in the usual way. Moreover, the inverse of 
ω(r,r') may generate a hierarchy of nucleophilicity kernel. Unlike the pre-
vious formulations, the overall treatment here is general and analytic with 
hardly any bearing on the explicit form of E(N). The traditional opera-
tional definition of local softness and hardness contain the same ‘‘potential 
information’’ and they should be interpreted as the ‘‘local abundance’’ or 
‘‘concentration’’ of their corresponding global properties.

A similar situation happens with the local electrophilicity. Then, it is 
necessary to derive new expressions, and conditions that the correct local 
counterparts of the global softness, hardness, and electrophilicity must 
fulfill. This work can also be considered as a possible alternative to the 
traditional expressions of local softness and electrophilicity, see Torrent–
Sucarrat et al. (2008, 2010); Gál et al. (2011).

Within the actual framework of long-range softness DFT, the concepts 
of local and kernel electrophilicity were developed toards the local to 
global hierarchical criteria such as bilocal symmetry, asymptotic behav-
ior, and integral local to global relationships. Accordingly, with (4.210) 
in Eq. (4.236), the associated electrophilicity kernel looks like (Putz & 
Chattaraj, 2013)

  (4.238)

At this point, aiming to formulate a local version for electrophilicity 
a working local softness expression is needed; to this end, by inspecting 
the Eq. (4.212) on its intermediate form, while remembering the local-
to-global ratio definition for Fukui function according with Eq. (4.196) 
here under the form

  (4.239)

one may easily recognize the form (Putz & Chattaraj, 2013)

  (4.240)

First of all, it is apparent that Eq. (4.240) is a rearrangement of Eq. (4.211) 
when Eq. (4.239) applies thus revealing its long-range nature. Then, within 
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the present long-range framework, one may further check the fulfillment 
of hierarchy (4.213):

  (4.241)

when recalling Eq. (4.211) and normalization of the Fukui/shape func-
tion (4.208). To finally prove the full consistency of the actual long-range 
approach of electronic density, one may reciprocally consider the hierar-
chy (4.213) as granted by the local softness (4.240) within the long-range 
form of the local hardness (4.211), i.e., through integrating both sides of 
(4.240) with respect to “r” one arrives at identity

  (4.242)

which equivalently rewrites with basic DFT Eq. (4.168) as:

  (4.243)

leaving with the approximate local relationship

  (4.244)

From Eq. (4.244), it is clear that in the condition of Eq. (4.211) the shape 
function (4.207) results, and vice-versa, this way proving the present long-
range consistency.

With these, the local electrophilicity uses the local softness (4.240) to 
yield (Putz & Chattaraj, 2013)

  (4.245)

It is now clear that Eq. (4.238) with Eqs. (4.245) and (4.234) are related by 
consistent hierarchical integration (4.237), within the long-range regime 
of electronic interactions, i.e., through involving local hardness (4.211) 
and the related local softness (4.240).

Regarding the chemical reactivity implications of the actual working 
expressions, the softness and electrophilicity kernels (4.210) and (4.238), 
and the local electrophilicity (4.245) one may have interesting insight by 
considering the series expansion of the potential dependent terms (Putz & 
Chattaraj, 2013)
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  (4.246)

for small local chemical hardness contributions, i.e., higher chemi-
cal reactivity local behavior. Within the long-range regime of interac-
tion, Eq. (4.211) however, is consistent with actual local hardness limit 
η(r) → 0, one obtains that the terms of type (4.246) vanishes in the odd 
orders and reduces to unity for even orders of electronic charge; in usual 
conceptual DFT language this means that when chemical reactivity is 
driven by first order of electronic charge (transfer) no softness and electro-
philicity either at bilocal or local long-range is manifested while they are 
strengthened by a factor of two when parabolic electronic charge models 
the chemical reactivity; this way the present approach has as the limiting 
case the parabolic view of the chemical reactivity.

4.5 ABSOLUTE ELECTRONEGATIVITY AND CHEMICAL 
HARDNESS

According to the Coulson’s famous metaphor, to solve the electronic 
frontier (valence or bonding) problems on the basis of the many-elec-
tronic ground state stands for quantum-chemists almost as “to determine 
the weight of the captain of a large ship by weighing the ship when he is 
and when he is not on board” (Coulson, 1960). That is the case of electro-
negativity (EN or χ), a concept that, being introduced from the Berzelius 
classification of atoms as electronegative or electropositive, had achieved 
over the years many definitions and interpretations concerning atomic 
reactivity and bonds formation (Huheey, 1978). Among many important 
contributions to this concept (Sen & Jørgensen, 1987), we are remember-
ing the landmark contribution of Pauling (1932), which established an 
empirical scale of χ based on bond energies. In his view, the electronega-
tivity means “the power of an atom in a molecule to attract electrons to 
itself” (Pauling, 1960). Just as Pauling, being interested on a scale to esti-
mate the polarity of the chemical bonds, Mulliken, through the seminal 
works of 1934–1935 (Mulliken, 1934), averaged the IP and the EA for the 
valence states of an atom or radical to define his electronegativity as in 
Section 4.2.2.1, Eq. (4.3).
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Many years after, a new emerging form of quantum mechanics, the 
DFT, appears as the modern quantum frame in which a chemical system 
(an atom, an ion, a radical, a molecule or several molecules) can be treated 
in a state of interaction (Parr & Yang, 1989). In this modern context, the 
cornerstone EN definition of Parr as the minus of the chemical potential 
(μ) of a system in a grand canonical ensemble at zero temperature (T) was 
formulated (in atomic units), see (Parr et al., 1978), χP ≡ −μ as in Eq. (3.1), 
when the ground state energy EN is assumed to be a smooth function of the 
total number of electrons N.

Due to the Hohenberg and Kohn theorems (1964), all properties of the 
ground state are functions only on N and V(r). Therefore, much chemistry 
is comprised in above EN, as μ = μ[N, V(r')] measures the escaping ten-
dency of an electronic cloud from the equilibrium system.

However, if the finite-difference (FD) approximation of Parr EN (3.1) 
is employed, around the referential integer total number of electrons N0 the 
original Mulliken formula (4.3) for EN is formally recovered

  (4.247)

Nevertheless, at this point an opportunity for confusion and misunder-
standing can arise. This because there is a conceptual difference between 
the DFT values of IP and EA, that are for the ground state of a system, in 
definition (4.247), and their averaged values on the supposed valence or 
excited states, as displayed in Eq. (3.1). Such dichotomy can be transposed 
at the potential level: in the Parr picture, since V(r) is a non-zero constant 
the almost vertical values are involved, whereas in the Mulliken approach 
the almost adiabatic case is fixed by setting V(r) = 0, as no further elec-
trons are attached to the system.

The reconciliation of these two extremes in defining electronegativity 
between the valence and bounded electronic states, i.e., free and constant 
ground state potential limits, respectively, is the main purpose of this work. 
The consequences of the new emerging electronegativity ansatz are exposed 
in relation with associated reactivity indices and applied on the atomic scales.

Searching for the relation between the Mulliken valence- and Parr 
ground state-electronegativities, there was already proved that the former 
can be seen as the average of the last one (Komorowski, 1987; Putz, 2006):
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  (4.248)

The series of relations (4.248) establishes, however, that the Mulliken and 
Parr electronegativities can be appropriately called the absolute and chem-
ical ones, respectively.

Next, just on thermodynamic basis, when a bond A − B is considered, 
the electronegativity concept comes into play to prove the bond polar-
ity through the gauge reaction (4.157) providing the difference in energy 
of the right and left products, respectively, as (Putz, 2006):

  (4.249)

It is thus clear that in order to proper describe the reactive propensity of 
the chemical systems the change in electronegativity has to be as well 
considered. That is to consider also the variation dχP and then to average 
it against the interval (N0 – 1, N0 + 1) to extract the counterpart informa-
tion respecting electronegativity, that should measure the resistance to the 
reactivity, named hardness (η) (Sen & Mingos, 1993; Pearson, 1997). In 
such, formally, the absolute hardness is obtained as (Putz, 2006, 2008a):

  (4.250) 

that unfortunately cannot give particular information as far χP(N) remains 
unknown.

Still, if the Parr-Pearson or chemical hardness is abstracted from 
Eq. (4.250) as the derivative of the Parr’s electronegativity (3.1) (Parr & 
Pearson, 1983), as in Eq. (3.3) presented, an operational definition of it 
from the method of finite differences can be achieved:



234 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

  (4.251)

recovering the Hinze formulation (4.79), while assisting the well-known 
principles of chemistry: the hard and soft acids and bases (HSAB) and the 
maximum hardness (MH) principles, see Volume III of the present five-
volume work, and Pearson (1973, 1990); Chattaraj & Schleyer (1994); 
Chattaraj & Maiti (2003); Chattaraj et al. (1991, 1995).

Worth noting that when considering the factor (4.158), now rewritten as

  (4.252)

as well in Eq. (4.250) and as in Eq. (3.3), it accounts for the average of 
the acidic (electron accepting, N0 ≤ N ≤ N0 +1) and basic (electron donat-
ing, N0 – 1 ≤ N ≤ N0) behaviors, being therefore an inherent part of the 
hardness definition at large. Nevertheless, the Parr-Pearson electroneg-
ativity-hardness formulations, (4.3) and (4.251), respectively, provide a 
drastic unification of the χ-theories and the HSAB rules in terms of IPs and 
electronic affinities (Putz, 2006, 2008a). Actually, beside the fact that the 
theoretical approaches and scales for Parr electronegativity (3.1) and Parr-
Pearson hardness (3.3) under their chemical counterpart forms Eqs. (4.3) 
and (4.251), respectively, are available (Robles & Bartolotti, 1984), it is 
essential to consider the experimental values of IPE and EAE, as displayed 
in the Table 4.3 (Lackner & Zweig, 1983), from where the finite-differ-
ences chemical χFD and ηFD are abstracted at the atomic level.

The inspection of the Table 4.3 reveals, apart of the periodic trends for 
the chemical electronegativity, hardness, and IP that, across elements, the 
electron affinities poses as well positive as negative signs. This situation 
suggests that, when searching for a theoretical rationalization of these num-
bers, a proper combination of the adiabatic (valence) and vertical (ground 
state) approaches should apply. For the shake of generalization, the Parr 
electronegativity and the Parr-Pearson hardness definitions as derivatives, 
Eqs. (3.1) and (3.3), are labeled from now as χD and ηD, respectively. In this 
respect the confusion with their chemical counterparts, Eqs. (4.3) or (4.247) 
and (4.251), as the finite difference definitions, is avoided. However, from 
above discussion about absolute reactivity indices, the following present 
working definitions will be considered (Putz, 2006):
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TABLE 4.3 Experimental First Ionization Potential IPE, First Electron Affinity EAE, and Their Associated Chemical Electronegativity χFD 
and Chemical Hardness ηFD, Calculated Upon the Finite Difference Equations (4.3) or (4.247) and (4.251), Respectively, For the Ordinary 
Elements (Lackner & Zweig, 1983)

Legend: Symbol of Element
Finite Difference Electronegativity: χFD

Finite Difference Hardness: ηFD

Experimental Ionization Potential: IPE

Experimental Electron Affinity: EAE

H
7.18
6.45
13.62
0.73

He
12.27
12.48
24.65
-0.21

Li
3.02
4.39
5.41
0.62

Be
3.43
5.93
9.36
-2.5

B
4.26
4.06
8.32
0.21

C
6.24
4.99
11.34
1.25

N
6.97
7.59
14.56
-0.62

O
7.59
6.14
13.62
1.46

F
10.4
7.07
17.47
3.33

Ne
10.71
10.92
21.63
-0.31

Na
2.80
2.89
5.02
0.52

Mg
2.6
4.99
7.7
-2.39

Al
3.22
2.81
6.03
0.42

Si
4.68
3.43
8.22
1.25

P
5.62
4.89
10.5
0.73

S
6.24
4.16
10.4
2.08

Cl
8.32
4.68
13
3.64

Ar
7.7
8.11
15.81
-0.42

K
2.39
1.98
4.37
0.52

Ca
2.29
3.85
6.14
-1.66

Sc
3.43
3.22
6.55
0.21

Ti
3.64
3.22
6.86
0.42

V
3.85
2.91
6.76
0.94

Cr
3.74
3.12
6.76
0.62

Mn
3.85
3.64
7.49
0.31

Fe
4.26
3.64
7.90
0.62

Co
4.37
3.43
7.90
0.94

Ni
4.37
3.22
7.7
1.14

Cu
4.47
3.22
7.8
1.25

Zn
4.26
5.2
9.46
-0.94

Ga
3.22
2.81
6.03
0.42

Ge
4.58
3.33
7.90
1.25

As
5.3
4.47
9.78
0.83

Se
5.93
3.85
9.78
2.08

Br
7.59
4.26
11.86
3.43

Kr
6.86
7.28
14.04
-0.42
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Rb
2.29

1.87

4.16

0.52

Sr
1.98

3.74

5.72

-1.77

Y
3.43

2.91

6.45

0.52

Zr
3.85

3.02

6.86

0.83

Nb
4.06

2.91

6.86

1.14

Mo
4.06

3.12

7.18

1.04

Tc
3.64

3.64

7.28

0.00

Ru
4.06

3.43

7.38

0.62

Rh
4.26

3.22

7.49

1.04

Pd
4.78

3.64

8.42

1.25

Ag
4.47

3.12

7.59

1.35

Cd
4.16

4.78

9.05

-0.62

In
3.12

2.70

5.82

0.31

Sn
4.26

3.02

7.38

1.25

Sb
4.89

3.85

8.63

1.04

Te
5.51

3.54

9.05

1.98

I
6.76

3.74

10.5

3.12

Xe
5.82

6.34

12.17

-0.42

*All units are in eV (electron-volts) (Putz, 2006, 2008a).

TABLE 4.3 Continued
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  (4.253)

  (4.254)

  (4.255)

  (4.256)

as the absolute electronegativity, hardness, IP, and EA, respectively.
The definitions (4.253)–(4.256) are displayed in their most general form 

since the changes in the ground state energy (dEN) as well in the chemical 
potential (dχD = −dμD) provide the fundamental DFT equations for treating 
the chemical reactivity (Putz, 2006, 2008a). Remarkably, if the semi-sum 
of the absolute IP and EA of Eqs. (4.255) and (4.256), respectively, is 
performed the absolute EN (4.253) is recovered. This way, the unifica-
tion of the Mulliken and Parr approaches of electronegativity, through the 
relations (4.3) and (3.1), respectively, is consecrated whatever form EN 
of the total energy is assumed, due to actual integral absolute definitions. 
Instead, since the electronegativity-hardness (4.254) correlation involves 
the differential electronegativity rather that the total energy dependence 
there is expected that the absolute hardness to do not be reduced as the 
semi-difference of the absolute IP and EA of Eqs. (4.255) and (4.256), 
respectively. In this respect the actual integral absolute hardness (4.254) 
provides a generalization picture of the previous chemical hardness coun-
terpart (4.251).

The unification of the Mulliken and the Parr electronegativity 
approaches stands, at the valence level, once the number of electrons N0 
is further identified with the number of the valence electrons Nv, while the 
ground state information are comprised through the involvement of the 
total energy of the system EN, before the limits through the Eqs. (4.253), 
(4.255), and (4.256) definitions to be performed.

Nevertheless, from the relations (4.253)–(4.256) there is remarked that 
the absolute hardness (4.254) do not enter in such combined scheme as far 
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as its valence nature, through the limits over the differential EN rather than 
on the total energy EN, is emphasized. This conceptual behavior for the 
absolute hardness (4.254), respecting its absolute electronegativity coun-
terpart (4.253), predicts special features for its computations’ effects at 
whatever atomic or molecular levels.

However, the absolute χ, η, IP, and EA analytical density functionals 
based on (4.253)–(4.256) formulations, respectively, can be achieved within 
conceptual DFT chemistry, as will be further exposed. More, because of 
the Hohenberg-Kohn theorem prescription, the relations (4.253)–(4.256) 
open the possibility of the systematic treatment of the absolute χ, η, IP, and 
EA indices when either or both functional dependences on N and V(r) of 
the EN and χD are assumed; such systematics will be next exposed.

4.6 DENSITY FUNCTIONAL ELECTRONEGATIVITY AND 
CHEMICAL HARDNESS

4.6.1 FIRST ORDER VARIATION IN CHARGE

In considering the analytical realization of the present model, the case of 
the first order in charge expansion of the differential electronegativity χD 
and total energy EN is firstly treated (Putz, 2006).

Actually, for the differential EN we have the identities:

  (4.257)

that can immediately be integrated furnishing the simple first case-density 
functional for χD:

  (4.258)

with the given parameter of Eq. (4.223), . Worth remarking that 
the above integration procedure corresponds with the valence picture in 
that the valence shell is filled from 0 up to the pertinent number of valence 
electrons Nv. In this respect, Nv cannot exceed a reasonable low number of 
electrons so assuring the stability of the concerned chemical system.
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Within the same approach the absolute hardness of (4.254) can be as well 
evaluated to give its density functional, yielding the form:

  (4.259)

Nevertheless, having computed  as (4.258) it is useful in writing the 
total energy expansion accordingly:

  (4.260)

Note that although the physical functional dependence of  is of Nv as 
resulting from (4.258), the N-dependence of  in Eq. (4.260) was empha-
sized in order to be consistent with the mathematical expression of  in 
the view of further integration between the Nv related limits. Nevertheless, 
such physical-mathematically switching between Nv and N dependences is 
circumscribed within the present valence-ground state unified approach of 
electronegativity and related indices.

There is now easy to recognize that the absolute EN (4.253) will be par-
ticularized by the appropriate integration of Eq. (4.260) when Eq. (4.258) 
is considered, giving the density functional (Putz, 2006):

(4.261)

whereas, for the absolute IP of Eq. (4.255), by applying its specific limits 
of integration around the reference valence number of electrons Nv, the 
density functional results as:

  (4.262)
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Finally, without being necessary to perform a separate integration, the 
density functional for the absolute EA of (4.256) will follow from the pres-
ent absolute EN and IP ones, (4.261) and (4.262), respectively, through the 
relation:

  (4.263)

as already anticipated.

4.6.2 SECOND ORDER VARIATION IN CHARGE

In the same manner as previous, the expansion up to second order in 
charge will lead with the same steps, apart of arising of an additional term, 
in analyzing the consequences of the differential χD and Nv variations.

Practically, the present , within the exposed approximate DFT soft-
ness hierarchy, expands under the form (Putz, 2006):

  (4.264)

Then, from Eq. (4.264) the definite density functional  is evaluated to be:

  (4.265)

while the associate absolute hardness takes from Eq. (4.254) the actual 
density functional expression:

(4.266)
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Next, calling  when going to the second order in charge expansion for 
the total energy EN,

  (4.267)

as before, the proper integrations of Eqs. (4.253), (4.255) and (4.256) will 
provide the density functionals for the actual absolute electronegativity 
(Putz, 2006):

  (4.268)

for the absolute IP:

  (4.269)

and for the absolute EA:

  (4.270)

respectively.
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4.6.3 FIRST ORDER VARIATION IN CHARGE AND POTENTIAL

Further improvement in our systematic applies when also the potential 
variation is taken into account. Such picture is particularly meaningful for 
assigning reactivity indices based on external potential direct influence 
(Ayers & Parr, 2001).

Under the first order in charge and potential variation, the differential 
EN expansion primarily looks like (Putz, 2006):

  (4.271)

from where there is observed, that in order to make a closed contact with 
softness DFT picture, the functional derivative  have to be 
rearranged firstly. In doing so, worth introducing also the first order expan-
sion of the total energy respecting the charge and potential:

  (4.272)

Since the functional derivative of the EN with respect to the potential 
V(r) may be determined from the fundamental DFT relation (4.173) the 
Eq. (4.272) rewrites as:

  (4.273)

from where the Maxwell reciprocal relations can be abstracted as in 
Eq. (4.175), with the appropriate chain rule (4.196) specific to the actual 
softness approach. However, with these information, the above (4.271) 
equation of  takes the integrable form:

  (4.274)

Nevertheless, when performing the integration to get, for instance, the abso-
lute electronegativity of (4.253) the path integral over δV(r) is involved. 
This can be solved between the adiabatic (V(r) = 0) and vertical V(r) = ct ≠ 0 
limits. Such treatment corresponds with the physical picture in which an 
electron can be added to the chemical system from infinity due to its elec-
tronegativity (Putz et al., 2003). This approach is consistent also with IP and 

www.Ebook777.com

http://www.ebook777.com


Periodicity by Peripheral Electrons and Density in Chemical Atom 243

EA as far it was already established that they are in close relation with EN, 
even at the absolute (or integral) level. This way, the adiabatic and vertical 
approaches of defining EN respecting the valence and ground state, respec-
tively, are as well combined through the described potential path integral 
recipe, reflecting another level of unifying Mulliken and Parr electronega-
tivity views. Under these circumstances the finite EN is now successively 
calculated from (4.274) until its density functional form (Putz, 2006):

  (4.275)

where the additional notation:

  (4.276)

beside the introduced chemical action

  (4.277)

However, in performing the potential path integral of (4.275) another assumption 
was made, namely to consider both L(r) and ρ(r) as “independently” of V(r) as 
far as they do not pose an explicit dependence on it. Instead, the new introduced 
V(r)-dependent quantities, b and CA of Eqs. (4.276) and (4.277), respectively, 
were considered “independent” of N, as before was the case in Eq. (4.223).

In similar manner, the absolute hardness is obtained from the integra-
tion of Eq. (4.274) between the limits prescribed in Eq. (4.254) with the 
density functional result:

(4.278)

Then, back to the total energy differential expansion (4.273), by considering 
the previous deduced  with Eq. (4.275) analytic form and making use of 
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the described path integration methodology, one gets from the Eqs. (4.253) 
and (4.255) definitions the present density functionals (Putz, 2006, 2011a):

(4.279)

(4.280)

for the absolute EN and IP, respectively, while for the absolute EA of 
Eq. (4.256) there is maintained the functional relation:

  (4.281)

as already consecrated. As a note, the absolute electronegativity  under 
the Eq. (4.279) density functional form have been as well deduced based 
on the so-called chemical action (4.277) functional (Putz, 2008a), within 
a conceptual variational DFT framework, its reliability being then tested 
in deriving the atomic radii and the associate size-dependent atomic 
properties (Putz et al., 2003).

4.6.4 SECOND ORDER VARIATION IN CHARGE—FIRST ORDER 
IN POTENTIAL

The present venture further supports a more rich systematic structure in 
differential electronegativity and total energy expansions. For instance, 
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when the expansions up to the second order in charge and of the first order 
in potential are brought together will produce the  expression, succes-
sively as (Putz, 2006):

(4.282)

One should note at this point that in above electronegativity expansion, 
Eq. (4.258), the first order in potential variation brings the frontier con-
tribution to the system though the basic definition of Fukui function of 
Eq. (4.196) (Yang & Parr, 1985) while the presence of the second order 
derivation respecting potential in the energy expansion of Eq. (4.257)

  (4.283)

is accounted through the basic DFT relationship (4.173) by the contribu-
tion of the so-called linear response function of Eq. (4.197) (Chermette, 
1999) that sums the negative the kernel softness s(r, r') (Berkowitz & 
Parr, 1988) with local softness coupling averaged by the total softness 
index. Yet, it apparently does not influence the chemical information con-
tents because it vanishes under the following successive integral transfor-
mations (Putz, 2011d)

  (4.284)
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since assuming a non-correlated external potential—i.e., in the absence 
of any quantum entanglement whatsoever (Bruss, 2002)—motivating 
the first null in Eq. (4.284), and due to the application of the Hellmann-
Feynman theorem (Hellmann, 1937; Feynman, 1939) prescribing zero 
average of the exercised force F(r) of applied external potential around 
the ground/equilibrium state (Deb, 1974), here employed under the func-
tional derivative form

  (4.285)

for motivating the second null in Eq. (4.284). However, it is worth noting 
that the term (4.284) also connects with the chemical action (4.277) and of 
its principle (Putz, 2009a)

  (4.286)

see Volume III of the present five-volume work. Within the approxima-
tions the integration of Eq. (4.282) produces the finite differential EN first 
(Putz, 2006):

  (4.287)

and then the absolute hardness (4.254) with the actual density functional 
form:

(4.288)
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Next, the EN of Eq. (4.287) stands as an important ingredient in writing 
the total energy expansion (Putz, 2006):

  (4.289)

with the help of which also the absolute density functionals of 
electronegativity:

  (4.290)

of IP:

  (4.291)

and of EA:

  (4.292)

are specifically deduced from the definitions (4.253), (4.255), and (4.256), 
respectively, as usual in this systematic.
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Finally, worth specifying that the presented line of systematic formula-
tions of the density functional reactivity indices can be in principle contin-
ued when also the expansions containing higher order terms in potential are 
considered through the nonlinear electronic responses (Senet, 1996, 1997). 
The recent effects as the spin-philicity and spin-donicity in spin-catalysis 
phenomena can be rationalized on such generalized analysis (Pérez et al., 
2002). Therefore, this way, also a closely diagrammatical theory of the 
absolute χ, η, IP, and EA can be built up with increasing accuracy in the 
non-local effects that the softness kernel approximation may induce.

4.6.5 NOTE ON DENSITY FUNCTIONAL MULLIKEN 
ELECTRONEGATIVITY

While the integral approximation in Eq. (4.248) may be rewriting in a 
more elaborate way (Putz et al., 2005)

  (4.293)

now, according with the Hohenberg–Kohn first theorem (Hohenberg & Kohn, 
1964) and of the chemical action principle, see Eq. (4.286) and (Putz, 2009a, 
2011b) the two terms in the right hand side bracket of Eq. (4.293) identically 
vanish since does not optimize the associations of the electronic density of 
one state with the external potential applied on that state, thus leaving with 
the identity (4.279) [Putz et al., 2003; Putz, 2006) of the absolute electro-
negativity as the true chemical Mulliken density functional (Putz, 2008c).

4.6.6 PATH INTEGRAL CONNECTION WITH DENSITY 
FUNCTIONAL THEORY

As the DFT prescribes, all the required main information about an elec-
tronic state is found in its external potential. From the physical point of 
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view this approach is natural based on the fact that the imposed exter-
nal influence will determine the actual electronic density. A classical 
link between these two quantities is made by the associated Schrödinger 
equation for the specific potential and giving the eigenfunction (Ψ) as 
the solution the electronic density will be obtain by making the squared 
|Ψ|2. However, this quantum classical way introduces the eigenfunction 
as another intermediate step and we don’t follow this route (Putz, 2009b).

Alternatively there is another formalism that gives the electronic 
density intermediated by the electronic partition function (Z) and in 
which instead to solve a differential equation, as Schrödinger equation 
is, it is proposed for solving a parametrical integral. This method was 
initiated by Feynman and now it is called the path integral formalism 
(Feynman, 1948). From the various formulation and equivalences of 
the path integral formalism we prefer to consider the quantum statisti-
cal picture in which the path integral of partition function has the form 
(2.21) (Kleinert, 2004), see also see Section 2.3: in expression (2.21) 
clearly appears the parametrical dependence of the spatial coordinates 
by the so-called “quantum statistical time” (τ ≡ ħβ) where ħ states as 
the Planck’s universal constant with β = 1/(kBT) as the inverse of the 
temperature in terms of the Boltzmann’s universal constant kB, m being 
the electronic mass. Because this τ-parametric dependency the above 
integral is called path-integral.

However, for the practical evaluation, the general path integral for the 
electronic partition function it is further transformed and approximated. 
For such, Feynman and Kleinert have proposed the classical effective 
potential version of the partition function (2.21) reduces it to the simple 
form of Eq. (2.64) where the path influence it was comprised within the 
introduced Feynman centroid (2.20). Thus, the Feynman-Kleinert (FK) 
path integral approximation scheme of Section 2.5.2 provides a very 
elegant recipe for partition function calculation using only the external 
potential dependence. The FK relations furnish the simplicity in the path 
integral analyticity but still remains at the formal level because of the 
unspecific analytical form of the classical effective potential as a function 
of the Feynman centroid, here r0 ≡ x0. At this moment it will be introduced 
another level of approximation within Feynman-Kleinert formalism, con-
trolled by the variational principle.
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As it was derived in the previous Section 4.6.5 the Mulliken density 
functional electronegativity requires the knowledge of the electronic den-
sity under the external potential influence. Being exposed all the ingredients 
for the analytical expression for the partition function with only the exter-
nal potential dependence, the electronic density computed through out of 
Feynman-Kleinert path integral algorithm takes the form, see also Eq. (2.11):

  (4.294)

Here it is observed that the normalization condition looks like:

  (4.295)

instead of standard DFT formulation (4.168). However, this fact is in 
accordance with the picture of the effective valence electron which will be 
ionized or will be added under the core influence. This way of computing 
the electronegativity will serve us as the second scale called path integral 
(PI) electronegativity scale.

For the concrete calculations it is easily observed that the self-consis-
tency of the involved parameters requires extra-input trial information. 
This supplementary knowledge can be avoided if we consider an addi-
tional limit. It is introduced the so-called Markovian approximation that 
regards the Eq. (2.122) limit (see discussion of Section 2.5.5) ħβ → 0. 
We should mention here that this limit corresponds with the ultra-short 
correlation of the involved electrons with the applied external potential. 
This can be motivated by remembering the temporal nature of the quan-
tum statistical quantity , see for instance Eq. (3.36). This means 
that assuming initially ( ) the electronic system in the free 
motion such that no potential influence is felt, as the external potential 
applies it impose an immediately  for orbit stabilization of 
the electronic system, see Eq. (2.122). Moreover, this limit introduces also 
correlation effects with medium (Putz, 2009b).

We start performing the above Markovian limit that gives:

  (4.296)
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Then, in the smeared-out potential relation there is considered the change 
of variable in the way that

  (4.297a)

and

  (4.297b)

that permits the writing of the smeared out potential expression succes-
sively in the so-called Wigner expansion (Putz, 2009b):

(4.298)

Finally, the optimized frequency (2.84) results in the Markovian limit as:

  (4.299)

The smeared out potential can be summed up as an explicit dependency 
of the bar external potential V(r) and its second derivative. Finally, with 
partition function and corresponding electronic density the Mulliken elec-
tronegativity density functional is computed within path integral picture.

As a note, it should be mention that Parr and Yang (1989) have shown, 
how the integral formulation of the Kohn-Sham DFT arrives to the elec-
tronic density expression performing Wigner semiclassical expansion 
combined with the short time approximation regarding to the β parameter. 
However, the common tool between their and the actual electronic density 
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excursion states for the introduced effective potentials, that here it was 
further approximated by the smeared out (effective) potential. Then, all 
the potential components around the original one V(r) can be formally 
interpreted as the exchange-correlation path integral potential  with 
medium. This potential can be derived in any desired potential expansion 
order as based on Eq. (2.80), yet we will limit ourselves here to the second 
order with the result (Putz, 2009b)

  (4.300)

From the identification applied within the two above forms of effective 
potentials there is clear that the exchange-correlation path integral with 
medium

  (4.301)

corrects in a clearly quantum manner the original classical external poten-
tial V(r).

It is obvious that for applying the present Mulliken electronegativity 
formula to the atomic systems it should be know at least the core potential 
in which the valence electrons are evolved. Fortunately the pseudopoten-
tial theory provides such information for each atomic system starting from 
the Li one. It is natural to choose this way for our purpose because in this 
case the pseudopotential is seen as the external potential that applies to the 
valence electrons in agreement with the density functional picture. Then, 
the different electronic density formulation can be considered.

More, because we are interested in the Mulliken electronegativity 
(in order to can compare our formula with the available related values) 
it is significant to consider the unity normalization condition, see also 
Eq. (4.295), in the valence state (Putz, 2009b):

  (4.302)

Such path integral-PI normalization leads with the well chemical interpre-
tation that both ionization that act to extract one valence electron and the 
electronic affinity that tend to attract another electron to form a stabilized 
valence structure are motivated in terms of the one effective valence electron.
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Within the pseudopotential methods we arrive at two possibilities for 
the electronic density and thus the electronegativity evaluations. First one 
consider only the pseudopotentials into the path integral formalism that 
gives the electronic density in the quantum statistical manner as it was 
described in the previous section. This way has a strong physical mean-
ing because all the information about the electronic density and electro-
negativity are comprised (and dictated) only by the pseudopotential. The 
problem that arises in this approach is that the electronic density depends 
on the β parameter. This parameter will be fixed so that the electronic den-
sity to fulfill the path integral normalization condition. Additionally, the 
search of the β parameter must be done in the Markovian limit (β → 0) for 
which the path integral formalism was performed.

The second approach takes beyond to the pseudopotential data also the 
valence basis and the electronic densities are then computed in the classi-
cal quantum manner. At this point we need to consider the working orbital 
type for the atomic systems and we will chose the s-basis set because its 
spherical symmetry. This method resembles the previous discussed pseu-
dopotential approach however here combined with PI-effective smeared 
out potential.

As it was presented, both electronic density approaches have their own 
parametric dependency. Then these densities with fixed parameters are 
implemented for computation of the electronegativity. This implies that 
also the final electronegativity will have fixed scaling parameters. In both 
cases the appearance of the fixed parameters has the scaling effect to the 
electronic density in order to reduce the valence electronic system at one 
effective valence electron for which its density normalize to one. Making 
this assumption at beginning of computation we should recover in the final 
electronegativity the real (many) electronic valence state by an adequate 
re-scaling in terms of the specific values for the fixed (β and q) parameters.

Remarkably, the Feynman-Kleinert variational algorithm in path inte-
grals may be viewed as providing the calculation of the effective electronic 
density by constructing the constraint-searched partition function picture 
as the Levy constraint-search formalism (Levy, 1982) does in seeking the 
electronic density from the trial wave function. More clearly, Levy’s rec-
ipe prescribes that the ground state energy minimization scheme—within 
the second (Hohenberg & Kohn, 1964) theorem—involves, in fact, two 
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steps: one over all wave functions (Ψ) that give the same density (the inner 
minimization step) followed by the minimization throughout all density 
classes (the outer minimization step) (Putz, 2009b)

  (4.303)

through recalling the density functional basic functionals of Eqs. (4.165), 
(4.166), and (4.277).

Such equivalence between the path integral Feynman-Kleinert for-
malism and the density functional Levy’s one recommends the use of 
the Feynman-Kleinert density/densities for being implemented in density 
functionals with chemical relevance, the electronegativity for instance.

In this regard, the density functional for Mulliken electronegativity is 
in next computed and exemplified for atomic scales.

4.7 ATOMIC SCALES AND PERIODICITY BY REACTIVITY DFT 
INDICES

4.7.1 QUANTUM ATOM ON VALENCE STATE

A natural basic test for the just obtained systematic absolute χ, η, IP, and 
EA density functionals applies for the atomic systems.

Nevertheless, when many electronic systems are involved inherent 
approximations have to be considered. According with a pre-quantum 
mechanical thinking (Bohr, 1921), each electron in many-electronic atoms 
should have its own one-electron function or orbital, a picture suggested as 
well by the currently self-consistent methods (Hartree, 1957), being fairly 
rationalized by many spectroscopic facts since the energy levels are identi-
fied with those of a single electron moving in a central field (White, 1934). 
Therefore, the one-electron picture stands as the general frame in which 
also the present analysis is situated (Putz, 2006).
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The starting point will be a hydrogenic atom containing an atomic 
nucleus of charge Z and an electron interacting by means of the Coulomb 
potential (in atomic units):

  (4.304)

Since the interaction (4.304) is central, the associate wave equation may be 
separated in spherical polar coordinates to produce the normalized radial 
function. For the bound states hydrogenic atoms in the case of an infinitely 
heavy nucleus it looks like (Bransden & Joachain, 1983):

  (4.305)

which depends on the principal quantum number n, on the orbital angular 
momentum quantum number l, on the parameter:

  (4.306)

and on the associated Laguerre polynomials (Margenau & Murphy, 1964):

  (4.307)

of degree

  (4.308)

that sets out also the number of radial nodes (or zeros). Therefore, the 
radial distribution functions:

  (4.309)

exhibit (n – 1) maxima.
At this point worth noting that, for a given n, there is only one maxi-

mum when the quantum orbital number takes its largest value:

  (4.310)

leading from (4.308) with

  (4.311)

condition.
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It follows that, when studying the valence properties of an atom, at 
large distance from nucleus, the nodes in the radial part of the wave func-
tion are found to be unimportant (Ghosh & Biswas, 2002). Such case 
corresponds to the Slater’s asymptotic large distance picture for a hydro-
genic-like wave function of an effective principal quantum number n* in 
the field of an effective nuclear charge Z*,

  (4.312)

due to the screening effects of the inner electrons. As a direct consequence, 
the orbital parameter (4.306) becomes now the so-called orbital exponent:

  (4.313)

Note that the values of n* and Z* are computed upon specific rules set up 
so that the associate energy levels to check fairly with experiment (Slater, 
1930). Going to extract from the Eqs. (4.305) and (4.307) the actual work-
ing radial distribution function, within the Eqs. (4.310) and (4.311) condi-
tions, we first get out from the Eq. (4.307), the expression:

  (4.314)

that substituted in Eq. (4.305) leads with the result:

  (4.315)

However, because the radial function (4.315) is normalized as:

  (4.316)

the associate radial density abstracted upon definition (4.309) takes the 
working form recalling (4.131):

  (4.317)
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has to be conciliated with the DFT many-electronic constrain (4.168) so 
that the desired effective radial density at the valence shell level, when Nv 
electrons are involved fulfilles the constraint

  (4.318)

by applying the Slater integral recipe of Eq. (4.136).
Remarkably, the radial density (4.317) corresponds with the case in 

which the most probable radial distance from nucleus is achieved through 
its stationary equation,

  (4.319)

with the value:

  (4.320)

leaved under the form (4.320) for reasons to be revealed in a moment 
below.

From now we have at our side a simple analytical radial density frame 
in which the valence properties of the many-electron atomic systems can 
be fairly treated. In such, the Table 4.4 presents the particular constants 
that are relevant for the atomic systems under actual study.

To apply the presented radial density approach on the actual absolute 
χ, η, IP and EA density functionals the evaluation of the quantities CA, a, 
and b of relations (4.277), (4.223), and (4.276), respectively, it is firstly 
demanded.

Doing so, for the so-called chemical action (4.277), one gets by straight 
replacement (Putz, 2006):

  (4.321)
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TABLE 4.4  The Periodic Input Parameters used in the Actual Study: the Total Number of s+p Electrons Nv, the Principal Quantum 
Number n, the Orbital Exponent ξ* and the Effective Charge Z*, Calculated Upon the Slater Method (Slater, 1930), for the Valence Shells of 
the Ordinary Elements (Putz, 2006)

Legend: Symbol of Element
Number of s +p valence electrons: Nv

Valence principal quantum number: n
Orbital exponent: ξ*

Effective charge: Z*

H
1

1

1

1

He
2

1

1.7

1.7
Li
1

2

0.65

1.30

Be
2

2

0.98

1.95

B
3

2

1.3

2.60

C
4

2

1.63

3.25

N
5

2

1.95

3.90

O
6

2

2.28

4.55

F
7

2

2.6

5.2

Ne
8

2

2.93

5.85
Na
1

3

0.73

2.20

Mg
2

3

0.95

2.85

Al
3

3

1.17

3.50

Si
4

3

1.39

4.15

P
5

3

1.6

4.80

S
6

3

1.8

5.45

Cl
7

3

2.03

6.10

Ar
8

3

2.25

6.75
K
1

4

0.59

2.20

Ca
2

4

0.77

2.85

Sc
2

4

0.81

3.00

Ti
2

4

0.85

3.15

V
2

4

0.89

3.30

Cr
2

4

0.93

3.45

Mn
2

4

0.97

3.60

Fe
2

4

1.01

3.75

Co
2

4

1.05

3.90

Ni
2

4

1.09

4.05

Cu
2

4

1.14

4.20

Zn
2

4

1.18

4.35

Ga
3

4

1.35

5.00

Ge
4

4

1.53

5.65

As
5

4

1.70

6.30

Se
6

4

1.88

6.95

Br
7

4

2.05

7.60

Kr
8

4

2.23

8.25
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Rb
1

5

0.55

2.20

Sr
2

5

0.71

2.85

Y
2

5

0.75

3.00

Zr
2

5

0.79

3.15

Nb
2

5

0.83

3.30

Mo
2

5

0.86

3.45

Tc
2

5

0.9

3.60

Ru
2

5

0.94

3.75

Rh
2

5

0.98

3.90

Pd
2

5

1.01

4.05

Ag
2

5

1.05

4.20

Cd
2

5

1.09

4.35

In
3

5

1.25

5.00

Sn
4

5

1.41

5.65

Sb
5

5

1.58

6.30

Te
6

5

1.74

6.95

I
7

5

1.9

7.60

Xe
8

5

2.06

8.25

TABLE 4.4 Continued
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Instead, for computing the sensitivity indices (4.223) and (4.276) the 
local response function (4.221) is primarily written:

  (4.322)

Then, it is used to lay down their respective expressions:

(4.323)

(4.324)

In order to evaluate the above integrals by employing the valence shell 
properties to which they are associated, let’s remark that all of them are 
covered by the integral type:

  (4.325)

At this point is useful to further consider the equivalent forms of (4.325) as:

(4.326)

from where, it follows that the phase function

  (4.327)
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fulfills the stationary condition, f '(r) = 0, at the saddle point:

  (4.328)

Now, if the quantity (4.328) is particularized to the integrals appearing 
through the relations (4.321), (4.323), and (4.324) there is easily con-
cluded that they belong to the same family of values (Putz, 2006):

  (4.329)

like the most probable radius (4.320) of a given (valence) shell.
This observation is most helpful for our asymptotical treatment of the 

atomic systems suggesting that the saddle point approximation (Mathews 
& Walker, 1970), is suitable to fairly analytical perform the involved inte-
grals. According with the saddle point method, to evaluate an integral of 
type (4.325) the intermediate form (4.326) is approximated by the saddle-
point recipe (3.154) specialized here as (see also the Appendix of the pres-
ent volume):

  (4.330)

This way, the actual working formulas are (Putz, 2006):

(4.331)

(4.332)



Free ebooks ==>   www.Ebook777.com

262 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

(4.333)

With expressions (4.331)–(4.333) the systematic absolute χ, η, IP, and EA 
can be computed once their particular density functional formulations are 
employed upon a certain atomic system with the relevant parameters from 
the Table 4.4.

Regarding the analytical model further comments may apply. The gen-
eral theoretical framework stands as the DFT; however, this venture was 
developed on its conceptual rather than on its computational virtues. This 
way, the approximate energetic functional approaches (Nalewajski, 1996; 
Putz, 2008b) were systematically avoided by considering the independent-
particle picture of the softness kernel formulation, see Sections 4.6.1–4.6.4.

There was merged out that, actually, the local response function (4.221) 
plays a crucial role in our systematic. We like to emphasis that since the 
L(r) dependence on the gradient of density ∇ρ(r) and on the gradient of 
the minus external potential −∇V(r), instead of the purely density ρ(r) and 
potential V(r). More, L(r) through its (4.221) definition comprises two 
quantities, meaningfully as well on atomic and molecular levels. In such, 
the gradient of the minus potential −∇V(r) provides, physically, the force 
acting on the electronic system, emphasizing therefore on the force con-
cept in chemistry (Deb, 1973), whereas the gradient of density ∇ρ(r) cor-
relates with the modern fruitful concept of the flux partition of the electron 
density in mirroring of the chemical bond (Bader, 1990).

4.7.2 DISCUSSION ON CHEMICAL REACTIVITY RELATED 
ATOMIC SCALES

Being the actual numerical model mainly a rationalization of the experi-
mental facts, let’s involve other estimable quantities. The IP, closely 
related also with the actual absolute electronegativity (4.253) definition, is 
a quite accessible spectral atomic index, either theoretical from the limit 
frequency from which the continuum spectrum is achieved, or experimen-
tally by a Franck-Hertz experiment. Nevertheless, as far as all the valence 

www.Ebook777.com

http://www.ebook777.com
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electrons are involved two cases can arise. If after each ionization the 
resulting system relaxes into a different potential that support further ion-
ization processes the so-called spectroscopic IPS can be measured or com-
puted for most atoms of the elements, see Table 4.5 (Weast et al., 1989).

On the other side, if the “frozen orbitals” are considered at each valence 
ionization process, a picture supported by (Koopmans’ 1934) theorem, 
see also the Volume I of the present five-volume work, one can write the 
so-called generalized Pauling IP (Putz, 2006):

  (4.334)

giving therefore the minimum energy consumed by an isolated atom to 
release at once all its Nv electrons from the valence shell indexed by the 
principal quantum number n, see Table 4.6. However, it seems useful to 
add such Nv relating V(r) approaches in our study since, in deriving of the 
present absolute χ, η, IP, and EA density functionals.

Finally, as the IPs are directly related to the atomic size the compari-
son between their trends and the atomic radii predicted from (4.320), see 
Table 4.5, gives also a direct measure of the goodness of the actual IP 
scales. The Periodic Table organization through the change in Z across 
rows and shell number down columns strongly suggests that the so-called 
“third dimension” related with the average one-electron energy (energy 
per electron) is required in order to can explain (or predict) the molecular 
and solid state pattern organization (Allen, 1989).

Such a third dimension can be assigned to the average energy of atoms 
being therefore also the frame in which the absolute χ, η, IP, and EA from 
general definitions (4.253)–(4.256), respectively, are taken into discussion.

TABLE 4.5  Calibrating the χA, ηA, and IPA Functionals So That Their Respective Values 
for the Atomic H, as Given in the Table 4.3, to be Recovered; the Energetic [eV] Pre-
Factors Have Been Found, Respectively (Putz, 2006)

χA ηA IPA

[1] (27.21)×(–98.363) (27.21)×(88.542) (27.21)×(–372.997)
[2] (27.21)×(–65.634) (27.21)×(89.014) (27.21)×(–248.72)
[3] (27.2)×(0.765) (27.2)×(–5.331) (27.2)×(1.552)
[4] (27.21)×(0.51) (27.21)×(–5.329) (27.21)×(1.035)
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TABLE 4.6  The Values of the Theoretical Atomic Radii r* (10–11 m) Upon the Formula (4.320), of the Calculated Generalized Pauling 
Ionization Potentials IPP [eV] based on Eq. (4.334), and of the Spectral Ionization Potentials IPS [eV] (Weast et al., 1989), for the Valence 
Shells of the Atoms of the Ordinary Elements (Putz, 2006)

Legend: Symbol of Element
Atomic Radii: r*

Pauling Ionization Potentials: IPP

Spectral Ionization Potentials: IPS

H
5.29

13.6

13.6

He
3.11

78.61

54.42
Li
16.28

5.75

5.39

Be
10.86

24.55

18.21

B
8.14

68.95

37.93

C
6.51

143.7

64.49

N
5.43

258.6

97.9

O
4.65

422.3

138.2

F
4.07

643.6

185.2

Ne
3.62

930.9

239.1
Na
21.65

7.31

5.14

Mg
16.71

24.55

15.04

Al
13.61

55.53

28.45

Si
11.5

104.1

45.14

P
9.92

174.1

65.02

S
8.74

269.3

88.05

Cl
7.81

393.6

114.2

Ar
7.1

550.8

143.5
K
35.6

4.11

4.34

Ca
27.5

13.81

11.87

Sc
26.11

15.3

12.80

Ti
24.86

16.87

13.58

V
23.73

18.51

14.65

Cr
22.70

20.23

16.50

Mn
21.75

22.03

15.64

Fe
20.89

23.91

16.18

Co
20.08

25.86

17.06

Ni
19.34

27.88

18.17

Cu
18.65

29.00

20.29

Zn
18.00

32.17

17.96

Ga
15.66

63.75

30.71

Ge
13.86

108.5

45.71

As
12.43

168.7

62.63

Se
11.27

246.3

81.70

Br
10.31

343.7

103.0

Kr
9.49

462.8

126
Rb
48.11

2.63

4.18

Sr
37.14

8.84

11.03

Y
35.28

9.79

12.24

Zr
33.6

10.8

13.13

Nb
32.07

11.85

14.32

Mo
30.7

12.95

16.15

Tc
29.4

14.1

15.26

Ru
28.22

15.3

16.76

Rh
27.14

16.55

18.08

Pd
26.13

17.85

19.43

Ag
25.2

19.19

21.49

Cd
24.33

20.59

16.91

In
21.2

40.8

28.03

Sn
18.73

69.46

40.73

Sb
16.8

108.0

56

Te
15.23

157.7

70.7

I
13.93

220.0

-

Xe
12.83

296.2

-
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Before going into particular analysis let’s recall that the properties 
of the chemical elements reflect a non-periodic character if the atomic 
core is concerned whereas they show a systematic periodicity as far as the 
outer electronic shells of atoms are involved. In this respect, the elements 
belonging to the same group pose analogy relationships, based on the 
same type of configuration of the distinctive electron, while the homology 
is the rule across the elements of a period, having different valence quan-
tum states but monotonic similar energies. This way, the properties of the 
atoms completing their the last quantum shells with electrons are signifi-
cantly different respecting the atoms of the transitional elements having 
the last but one shells in the course of completing. Such general fashions 
are widely respected by all presented atomic scales through Tables 4.5–5.8. 
Nevertheless, a close attention to the individual studied chemical index per 
scale is also compulsory. In this respect let’s first observe that the results 
can be grouped like the “absolute 1 (A[1]) and 2 (A[2])” as well as the “abso-
lute 3 (A[3]) and 4(A[4])” scales corresponding with the “dN,” “dN+dNdN,” 
“dN+δV(r),” and “dN+dNdN+δV(r)” expansions, respectively. This group-
ing would also have been anticipated through the complementary signs 
and values in which the numerical calibrations factors of the working 
functionals appear in Table 4.5 (Putz, 2006).

In the context of actual assumptions and approximations the presented 
schemes of computations provide the atomic results grouped on the tables 
of elements as displayed through the Tables 4.5–4.8. Thus, from now only 
the absolute scales A[2] and A[4], the most complex ones in their groups, 
will be considered for discussions.

Regarding the IP, in the Figure 4.11 there are collected all the experi-
mental (IPE from Table 4.3), the spectral (IPS from Table 4.6), the general-
ized Pauling (IPP from Table 4.6), the absolute A[2] (  from Table 4.8), 
and the absolute A[4] (  from Table 4.10) considered scales, together 
with that of the atomic radii (r* from Table 4.6).

From the Figure 4.11 it is evident that all IP’s and r* profiles, beside 
some deviations, are homomorphic and to a decreasing in radius corre-
sponds an increase of IP. This is a natural relationship between these two 
quantities since a more compact atomic volume requires a higher energy 
for the ionization. Nevertheless, from the quantitative point of view the 
present  scale is the most appropriate to adopt as the DFT counterpart, 
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TABLE 4.7  The Absolute Electronegativity , Hardness , Ionization Potential , and Electron Affinity , Computed Upon the 
Eqs. (4.261), (4.259), (4.262) and (4.263), Respectively, for the Ordinary Elements

Legend: Symbol of Element

Absolute Electronegativity: 

Absolute Hardness: 

Absolute Ionization Potential: 

Absolute Electron Affinity: 

H
7.18

6.45

13.62

0.73

He
58.96

25.79

169.2

–51.27

Li
0.73

0.65

1.39

0.08

Be
3.75

1.69

10.68

–3.17

B
11.63

3.46

36.83

–13.56

C
28.38

6.21

94.53

–37.77

N
57.07

9.59

196.2

-82.06

O
102.3

13.27

359.8

-155.3

F
162.9

16.16

583.9

-258

Ne
240.6

17.87

874.6

-393.5
Na
0.73

0.66

1.38

0.08

Mg
2.08

0.93

5.91

–1.76

Al
4.76

1.42

15.06

–5.53

Si
9.44

2.10

31.36

–12.48

P
16.56

2.92

56.63

-23.52

S
26.51

3.82

92.47

-39.45

Cl
41.86

5.01

148.2

-64.46

Ar
61.56

6.16

220.5

-97.35
K
0.2

0.18

0.37

0.02

Ca
0.56

0.25

1.60

–0.48

Sc
0.69

0.31

1.96

–0.58

Ti
0.84

0.38

2.38

–0.71

V
1.01

0.45

2.86

–0.85

Cr
1.2

0.54

3.41

-1.01

Mn
1.42

0.64

4.04

-1.2

Fe
1.67

0.75

4.75

-1.41

Co
1.96

0.88

5.56

-1.65

Ni
2.27

1.02

6.45

-1.92

Cu
2.69

1.21

7.66

-2.27

Zn
3.09

1.39

8.79

-2.61

Ga
5.31

1.59

16.8

-6.17

Ge
8.72

1.94

28.96

-11.52

As
13.28

2.35

45.40

-18.84

Se
19.68

2.87

68.60

-29.23

Br
27.65

3.39

97.71

-42.41

Kr
38.11

3.98

136.1

-59.91
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Rb
0.09

0.08

0.17

0.01

Sr
0.25

0.11

0.72

–0.21

Y
0.32

0.14

0.9

–0.27

Zr
0.39

0.17

1.10

–0.33

Nb
0.47

0.21

1.34

–0.4

Mo
0.55

0.25

1.56

-0.46

Tc
0.66

0.29

1.86

-0.55

Ru
0.78

0.35

2.21

-0.66

Rh
0.92

0.41

2.60

-0.77

Pd
1.04

0.47

2.96

-0.88

Ag
1.21

0.55

3.45

-1.02

Cd
1.4

0.63

4.0

-1.19

In
2.43

0.73

7.69

-2.83

Sn
3.94

0.88

13.09

-5.20

Sb
6.17

1.10

21.09

-8.74

Te
9.07

1.34

31.56

-13.42

I
12.86

1.62

45.34

-19.63

Xe
17.67

1.92

62.97

-27.62

*All units are in eV (electron-volts) per atom (Putz, 2006).

TABLE 4.7  Continued
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TABLE 4.8  The Absolute Electronegativity , Hardness , Ionization Potential , and Electron Affinity , Computed Upon 
the Eqs. (4.268), (4.266), (4.269) and (4.270), Respectively, For the Ordinary Elements

Legend: Symbol of Element

Absolute Electronegativity: 

Absolute Hardness: 

Absolute Ionization Potential: 

Absolute Electron Affinity: 

H
7.18

6.45

13.62

0.73

He
58.48

24.85

168.4

-51.5

Li
0.73

0.66

1.39

0.08

Be
3.75

1.69

10.68

-3.17

B
11.62

3.45

36.78

-13.54

C
28.19

6.12

94.03

-37.64

N
57.06

9.26

193.3

-81.23

O
98.29

12.47

348

-151

F
151

14.74

546.6

-244.5

Ne
210.5

15.85

776.8

-355.9
Na
0.73

0.66

1.38

0.08

Mg
2.08

0.94

5.91

-1.75

Al
4.76

1.43

15.05

-5.53

Si
9.42

2.10

31.31

-12.46

P
16.48

2.90

56.4

-23.44

S
26.26

3.77

91.71

-39.18

Cl
41.11

4.89

145.8

-63.61

Ar
59.68

5.94

214.5

-95.09
K
0.2

0.18

0.37

0.02

Ca
0.56

0.25

1.60

-0.47

Sc
0.69

0.31

1.96

-0.58

Ti
0.84

0.38

2.38

-0.71

V
1.01

0.45

2.86

-0.85

Cr
1.2

0.54

3.42

-1.01

Mn
1.42

0.64

4.04

-1.2

Fe
1.67

0.75

4.75

-1.41

Co
1.96

0.88

5.56

-1.65

Ni
2.27

1.02

6.45

-1.91

Cu
2.69

1.21

7.66

-2.27

Zn
3.09

1.39

8.79

-2.61

Ga
5.31

1.59

16.79

-6.17

Ge
8.70

1.94

28.91

-11.51

As
13.23

2.34

45.26

-18.79

Se
19.55

2.84

68.19

-29.08

Br
27.33

3.34

96.7

-42.03

Kr
37.41

3.9

133.8

-59.04
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Rb
0.09

0.08

0.17

0.01

Sr
0.25

0.12

0.72

-0.21

Y
0.32

0.14

0.9

-0.27

Zr
0.39

0.18

1.10

-0.33

Nb
0.47

0.21

1.34

-0.4

Mo
0.55

0.25

1.56

-0.46

Tc
0.66

0.3

1.86

-0.55

Ru
0.78

0.35

2.21

-0.66

Rh
0.92

0.41

2.60

-0.77

Pd
1.04

0.47

2.96

-0.88

Ag
1.21

0.55

3.45

-1.02

Cd
1.41

0.63

4.0

-1.18

In
2.43

0.73

7.69

-2.82

Sn
3.94

0.89

13.08

-5.20

Sb
6.17

1.10

21.06

-8.72

Te
9.05

1.34

31.48

-13.39

I
12.79

1.61

45.13

-19.54

Xe
17.53

1.91

62.49

-27.43
*All units are in eV (electron-volts) (Putz, 2006).

TABLE 4.8  Continued
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within the present approximations, to the generalized Pauling one IPP 
even, however, a close relative relationship of both  and  scales 
with the experimental spectral IPS one is also remarked (Putz, 2006).

These observations suggest that the  and  atomic scales are 
merely reflecting the all valence electron ionization process rather than 
a single-electron releasing, as is commonly reported relating the electro-
negativity concept, see Table 4.3.

FIGURE 4.11  The comparative trend of the atomic radii r* from Table 4.6 (upper left) 
with respect to the atomic experimental first ionization potential IPE from Table 4.6 (middle 
left), the atomic experimental spectral ionization potential IPS from Table 4.6 (lower left), 
the generalized Pauling ionization potential IPP from Table 4.6 (upper right), the atomic 
absolute ionization potential  from Table 4.8 (middle right) and the atomic absolute 
ionization potential  from Table 4.10 (lower right) scales, respectively (Putz, 2006).
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TABLE 4.9  The Absolute Electronegativity , Hardness , Ionization Potential , and Electron Affinity , Computed Upon the 
Eqs. (4.279), (4.278), (4.280) and (4.281), Respectively, For the Ordinary Elements

Legend: Symbol of Element

Absolute Electronegativity: 

Absolute Hardness: 

Absolute Ionization Potential: 

Absolute Electron Affinity: 

H
7.18

6.45

13.62

0.73

He
32.96

45.17

60.27

5.62

Li
4.11

2.39

7.99

0.23

Be
12.04

12.13

22.67

1.41

B
31.39

36.49

58.38

4.39

C
75.19

80.81

140.8

9.55

N
157.6

133.7

300.5

14.82

O
289.8

161

564.7

14.84

F
460.1

119.1

916.6

3.58

Ne
645

-2.51

1309.6

-19.71
Na
6.30

5.10

12.05

0.56

Mg
13.57

14.46

25.43

1.70

Al
28.47

32.63

53.03

3.91

Si
57.36

62.8

107.3

7.45

P
107.8

105.2

203.5

12.14

S
188.2

156.4

359.2

17.23

Cl
315

211.5

608.4

21.49

Ar
486.6

247.4

951.5

21.63
K
4

2.2

7.8

0.20

Ca
8.04

6.28

15.39

0.68

Sc
9.11

7.70

17.37

0.85

Ti
10.29

9.34

19.52

1.06

V
11.57

11.23

21.85

1.29

Cr
12.96

13.4

24.36

1.57

Mn
14.48

15.85

27.08

1.88

Fe
16.12

18.63

30.01

2.24

Co
17.9

21.76

33.16

2.64

Ni
19.82

25.26

36.55

3.09

Cu
22.16

29.66

40.66

3.66

Zn
24.41

34.04

44.59

4.24

Ga
44.6

58.15

82.04

7.15

Ge
79.72

93.14

148.2

11.21

As
134.9

137.6

253.8

16.05

Se
219.9

192.4

418.4

21.53

Br
338.8

249.9

651.2

26.39

Kr
502.2

304.5

974.8

29.51
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Rb
3.1

1.35

6.09

0.10

Sr
5.95

3.78

11.52

0.37

Y
6.75

4.67

13.01

0.48

Zr
7.62

5.71

14.63

0.61

Nb
8.57

6.92

16.38

0.75

Mo
9.46

8.12

18.02

0.90

Tc
10.56

9.67

20.03

1.1

Ru
11.76

11.44

22.2

1.32

Rh
13.05

13.45

24.52

1.57

Pd
14.25

15.39

26.69

1.82

Ag
15.74

17.88

29.34

2.14

Cd
17.34

20.65

32.18

2.49

In
30.49

35.68

56.69

4.29

Sn
52.55

57.35

98.3

6.8

Sb
88.70

87.88

167.2

10.18

Te
142.7

126.1

271.3

14.14

I
221.1

172.3

423.7

18.56

Xe
330.1

224.5

637.2

22.95

*All units are in eV (electron-volts) (Putz, 2006).

TABLE 4.9  Continued
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TABLE 4.10  The Absolute Electronegativity , Hardness , Ionization Potential , and Electron Affinity , Computed Upon 
the Eqs. (4.290), (4.288), (4.291) and (4.292), Respectively, For the Ordinary Elements

Legend: Symbol of Element

Absolute Electronegativity: 

Absolute Hardness: 

Absolute Ionization Potential: 

Absolute Electron Affinity: 

H
7.18

6.45

13.62

0.73

He
32.96

45.22

60.29

5.62

Li
4.11

2.39

7.99

0.23

Be
12.04

12.13

22.67

1.41

B
31.39

36.49

58.38

4.39

C
75.19

80.8

140.8

9.55

N
157.7

133.7

300.5

14.82

O
289.8

161

564.7

14.84

F
460.2

119.1

916.8

3.58

Ne
645.2

-2.38

1310

-19.71
Na
6.30

5.10

12.05

0.56

Mg
13.57

14.46

25.43

1.70

Al
28.47

32.62

53.03

3.91

Si
57.36

62.78

107.3

7.45

P
107.8

105.2

203.6

12.14

S
188.2

156.4

359.2

17.23

Cl
315

211.4

608.4

21.49

Ar
486.6

247.3

951.6

21.63
K
4

2.2

7.8

0.20

Ca
8.04

6.28

15.39

0.68

Sc
9.11

7.70

17.37

0.85

Ti
10.29

9.34

19.52

1.06

V
11.57

11.23

21.85

1.29

Cr
12.96

13.4

24.36

1.57

Mn
14.48

15.85

27.08

1.88

Fe
16.12

18.63

30.01

2.24

Co
17.9

21.75

33.16

2.64

Ni
19.82

25.25

36.55

3.09

Cu
22.16

29.65

40.66

3.66

Zn
24.41

34.03

44.59

4.24

Ga
44.6

58.13

82.04

7.15

Ge
79.72

93.11

148.2

11.21

As
134.9

137.5

253.8

16.05

Se
219.9

192.3

418.4

21.53

Br
338.8

249.8

651.2

26.39

Kr
502.2

304.4

974.8

29.51
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Rb

3.1

1.35

6.09

0.10

Sr

5.95

3.78

11.52

0.37

Y

6.75

4.67

13.01

0.48

Zr

7.62

5.71

14.63

0.61

Nb

8.57

6.92

16.38

0.75

Mo

9.46

8.11

18.02

0.90

Tc

10.56

9.67

20.03

1.1

Ru

11.76

11.44

22.2

1.32

Rh

13.05

13.44

24.52

1.57

Pd

14.25

15.39

26.69

1.82

Ag

15.74

17.87

29.34

2.14

Cd

17.34

20.65

32.18

2.49

In

30.49

35.67

56.69

4.29

Sn

52.55

57.33

98.3

6.8

Sb

88.70

87.85

167.2

10.18

Te

142.7

126

271.3

14.14

I

221.1

172.2

423.7

18.56

Xe

330.1

224.5

637.2

22.95

*All units are in eV (electron-volts) (Putz, 2006).

TABLE 4.10  Continued
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As a consequence, worth stressing that further studies employing elec-
tronic density of the valence shell containing also the many-electronic 
correlation and exchange effects, improving therefore the working actual 
density (4.317) (Cook, 1974), are envisaged to systematically increase 
also the quantitative accuracy of the computed atomic IP’s.

Passing to the EA analysis, in the Figure 4.12 there are comparatively 
plotted the experimental (EAE from Table 4.3), with the absolute A[2] (
from Table 4.8), and the absolute A[4] (  from Table 4.10) scales.

First, let’s note that experimentally the EA stands as a wild quantity 
being mostly indirect measured, for instance trough the Haber-Born cycle 
and only recently improved since the advent of the laser photo-detachment 
experiments with negative ions (Hotop & Lineberger, 1985) and by the 
electron transmission spectroscopy (Jordan & Burrow, 1987).

As previously remarked, see Table 4.3 and Figure 4.12, the so-called 
experimental electron affinities from the EAE scale admit positive as well 
negative values. This situation is hard to interpret as far the adiabatic and 
variational methods provide EA=0, whereas the vertical approach, under 
V(r) = ct ≠ 0 condition, suggests EA<0 values.

The present  and  scales, through their derivation, i.e., by per-
forming the path integration on δV(r) from 0 (adiabatic) up to V(r) = ct ≠ 0 
(vertical) potential limits, like to solve somehow such dichotomy (Putz, 2006).

From Table 4.8 and in Table 4.10, and clearly evidenced in Figure 4.12, 
there appears that the  and  values display merely negative or 
positive scales, respectively. So, both the actual approaches are V*(r) 
dependent, although providing different values and scales depending on 
the complexity of the presence in the effective acting force −∇V*(r) and 
in its potential. In this respect, the  scale, which is richer in −∇V*(r) 
and V*(r) terms through the additional b and CA functionals, Eqs. (4.276) 
and (4.277), respectively, appears with a positive rationalized trend in 
Figure 4.12 and on an acceptable quantitative relative relation with the 
experimental one from Table 4.3.

Unlike the case of IP, the actual EA results suggest that, even con-
sidering all valence electrons in present computations, as the EA (4.256) 
definition is employed the “computational effect” corresponds with that of 
adding only one electron to the concerned system. Such combined sensi-
tivity further encourages the use of the actual  and  approaches 
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FIGURE 4.12  The comparative trend of the atomic experimental first electronic affinity 
EAE from Table 4.3 (upper) with respect to the atomic absolute electron affinity  from 
Table 4.8 (middle), and the atomic electron affinity  from Table 4.10 (lower) scales, 
respectively (Putz, 2006).
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coupled with their correspondent  and  functionals in correlation 
with the molecular orbital theory (Putz, 2006).

Turning to the non-experimental but matter intrinsic chemical indices, 
in the Figure 4.13 there are represented side-by-side the atomic scales of 
electronegativity and of its hardness companion from the finite difference 
(χFD and ηFD  of Table 4.3), the absolute A[2] (  and  of Table VI), and 
the absolute A[4] (  and  of Table 4.10) approaches.

Analyzing the electronegativity scales, Leland Allen has written much 
on criteria which good models has to fulfill see (Murphy et al., 2000) and 
the references therein.

FIGURE 4.13  The comparative trend of the atomic finite difference chemical 
electronegativity χFD and chemical hardness ηFD from Table 4.3 (upper) with respect to 
the atomic absolute electronegativity  and and hardness  from Table 4.8 (middle), 
and the atomic absolute electronegativity  and hardness  from Table 4.10 (lower) 
scales, respectively (Putz, 2006).
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Concerning the acceptability guidelines for the actual  and 
scales, given in the Tables 4.8 and 4.10, and plotted in the Figure 4.13, 
their features can be summarized as follow (Putz, 2006).

1. The free atom definition: both scales were built up for isolated atoms.
2. The electronegativity as energy per electron: the given values are 

expressed in electron-volts.
3. The inclusion of all valence electrons: for all main group atoms and 

for the most transition metals all valence electrons Nv are included 
in the working χA definitions, see relations (4.268) and (4.290), and 
in their computation, see relations (4.331)–(4.333).

4. The separation and contraction of the main-transition groups: the 
close lying values are presented for about 30% of the main groups 
and for 75% of the transition elements. Among the presented χ 
scales in Figure 4.13, all satisfying the last condition, the present 
ones display absolute values that better separates the main from 
transitional groups. As a consequence also the contraction of the 
transitional elements is better emphasized through actual models. 
Nevertheless, three significant figures are able to distinguish the 
electronegativities of all the considered elements.

5. The noble elements highest value: along the periods the noble ele-
ments have the highest electronegativity value. However, the pres-
ent  and  scales highly satisfy this criterion.

6. The Si rule: the requirement that all metals must have χ values which 
are less than or equal to that of Si is completely satisfied through the 
Tables 4.8 and 4.10; note that the finite-difference electronegativity 
picture produces the Pd exception as in Table 4.3 revealed.

7. The C rule: the requirement that the χ value of C have to be greater 
(or at least equal) with that of the H (χ ≅ 7.2 eV) is again com-
pletely fulfilled by the actual approaches but not from the finite-
difference scheme as it is evident by consulting the Figure 4.13 or 
the Tables 4.3, 4.8, and 4.10.

8. The metalloids band: the six considered metalloid elements (B, Si, 
Ge, As, Sb, Te) that separate the metals from the non-metals have 
electronegativity values, which do not allow overlaps between 
metals and non-metals. However, due actual high values of the 
actual absolute EN scales this criterion is well followed respecting 
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the finite-difference scale, compare  and  of Tables 4.8 and 
4.10, respectively, with χFD of Table 4.3.

9. The covalent-ionic-metallic triangle: for binary compounds, AB, 
the difference χ(A)-χ(B) must quantify the definitions of the ionic, 
covalent, and metallic bonds. The easiest way to visualize this 
trend is to construct the Ketelaar’s triangle (Ketelaar, 1958), that 
quantifies the sides of the binary bond by a triangle whose verti-
ces correspond to C (covalent), I (ionic) and M (metallic) limits, 
see the Figure 4.14. It is immediately from Figure 4.14 that on the 
diagonal (between M and C bonds) there are recorded the same 
electronegativity values in agreement with the fact that the cova-
lent and metallic bonds are assigned to “the same basic quantum 
mechanical maximum overlap-exchange forces” (Slater, 1939). 
Therefore, along the side C-M we are moving in fact from the right 
to left in the Periodic Table. This fashion is fully covered by the 
actual  and  scales that as going from right to left in Periodic 
Table an impressive decrease of electronegativity is recorded, see 
the Figure 4.13, that strongly emphasize on the passage from the 
electronegative to the electropositive elements.

10. The quantum mechanical viable definition: being an intrinsic prop-
erty of an atom, that is a quantum object, the electronegativity has 
to include the quantum nature of the electronic systems to whom 
is associated. The present scales are accommodated within concep-
tual DFT by employing the softness realization (4.226), which con-
tains three quantum constraints such the translational invariance 
condition, the Hellmann-Feynman theorem, and the normalization 
of the linear response function are.

11. The systematic behavior in the Periodic Table: the decreasing of 
 and  values along the group is respected as well as their 

differences in going from light to heavy atoms of the same period 
increases left to right across rows. Correctly, the halogen atoms 
have the highest electronegativity values with respect to their left 
row neighbors, in all present cases.

After all these criteria it seems that the actual absolute EN density 
functionals, Eqs. (4.268) and (4.290), and their atomic scales can be taken 
as reliable when further used in predicting bonding and reactivity.
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Nevertheless, a feed-back with the DFT Parr EN (3.1) definition worth 
also: as far as the  scales gives reliable results, and on the base of its very 
close relation with the , compare the χ values of Tables 4.7 and 4.8, one 
can equally choose to use the Eq. (4.260) instead of Eqs. (4.267) expan-
sion of dEN, on which the actual absolute EN (4.253) definition is based. 
But with Eq. (4.260) in Eq. (4.253) the series of transformations given 
in Eq. (4.248) are recovered, enhancing so far the Mulliken-Parr integral 
relationship. However, the relation (4.248) is further generalized when the 
absolute A[4] picture is adopted (Putz, 2006).

Finally, we focus on the absolute  and  scales. From the 
Figure 4.13 there is clear that, respecting the finite-difference energetic val-
ues, ηFD of Table 4.3, the actual  and  scales from the Tables 4.8 and 
4.10, respectively, show a more rationalized periodic trend. However, also 
between  and  scales a completely different tendency is remarked: 
at the main group level, in the first case, the decreasing trend of  values 

FIGURE 4.14  The schematic representation of the Ketelaar triangle for the binary 
AB bonding tendencies according with their electronegativity differences, between the 
representative bonds identified as I (ionic), C (covalent), and M (metallic) vertices; after 
Ketelaar (1958); Putz (2006).
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down groups is followed, while the situation is somehow reversed through 
the  records. Such situation may add new chemistry when using the late 
absolute hardness to rationalize the reactivity behavior.

Usually, the hardness is seen only as a companion to electronegativity, 
i.e., associated with the second order effects, as its Parr-Pearson basic (3.3) 
and (4.251) definitions reflect. This is also the case when the absolute A[2] 
actual picture is employed, a statement supported also by the close quanti-
tative atomic  and ηFD scales as the representations from the Figure 4.13 
indicate. Instead, when the absolute A[4] approach is performed the situa-
tion regarding both qualitative and quantitative absolute hardness  scale 
completely changes. Actually, the  values predict a smooth increase of 
the hardness effects paralleling those of , compare the Figures 4.13 
and 4.12, respectively. Remarkably, the linked behavior of  with  
is achieved even their basic definitions, Eqs. (4.254) and (4.256), respec-
tively, are not directly related, as there are, for instance, the definitions of 
χA and EAA, compare Eqs. (4.253) and (4.256) (Putz, 2006).

It is therefore worth to adopt the Eqs. (4.266) and (4.288) absolute 
hardness density functionals, the  and especially the  one, respec-
tively, as the trial schemes to further test the two major HSAB and MH 
principles, for the reactions to which even the use of the improved com-
pact finite difference schemes failed to produce the expected order of the 
reactivity preference, see Volume III of the present five-volume set (Putz, 
2016a).

Overall, the computed and represented atomic scales for the reactiv-
ity indices χ, η, IP, and EA of this venture display a systematic qualita-
tive periodic trend across the ordinary elements being in a relatively 
quantitative acceptable ratio with the experimental values, where these 
are available.

Nevertheless, especially when is about reactivity, having useful tools 
to predict good qualitative and relative ratios of atomic combinations 
stands as the “natural tendency of the mind to give to the shape of a graph 
some intrinsic value…to its ultimate consequences…because qualita-
tive and empirical deduction already gives them sufficient framework 
for experiment and prediction” (Thom, 1975). This is at the end what the 
Chemistry is dealing with (Putz, 2006) and this line of analsys will be 
further employed while treating chemical-biological interaction in the 
Volume V of the present five-volume work (Putz, 2016b).
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4.7.3 MULLIKEN ELECTRONEGATIVITY: THE RELATIONSHIP 
WITH CHEMICAL ACTION

The electrons of the atomic system are distinguished as the core- and 
the valence-ones within pseudopotential theory of atoms and molecules 
(Putz et al., 2005; Szasz, 1985; Preuss, 1969); this, because it aims to 
provide a “valence-only” theory for these systems, while assuring the sim-
plification of the computations. Certainly, the all-electrons picture is also 
possible through facing with the serious technical problem to assure the 
orthogonality constrains among all wave functions of all electrons of an 
atom. Moreover, having the valence shell treated separately is relevant 
for computing electronegativity, because of its definition regarding the 
added electron to the valence shell under the core influence. Therefore, a 
wise step is provided by the transformation of a many-valence electronic 
problem into a one-valence electronic system, so that the canonical den-
sity formulations can be at once considered. For achieving this, the link 
between the exact and density dependent pseudopotential is enforced by 
the latter’s satisfying the virial theorem releasing with the radial scaling of 
the pseudo-orbital (Preuss, 1969)

  (4.335)

with the scaling factor q. Therefore, the scaling factor q is searched in 
relation with the number of valence electrons, but such to fulfill the nor-
malization condition

  (4.336)

Next, the effective potential of the core is represented as a pseudo-
potential employing the Stuttgart/Bonn wave function expansion (Stuttgart 
Pseudopotentials, 2011)

  (4.337)

while the Mulliken electronegativity is computed starting from lithium, to 
assure the existence of the core electrons. For H and He systems the cor-
responding electronegativity values can be added from other methods of 
computation (Mulliken, 1934; Hinze & Jaffé, 1962).
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Within the pseudopotential methods we arrive at two possibilities for 
the electronic density and, consequently, for the electronegativity evalua-
tions (Putz et al., 2005, 2009b):

• The first one considers only the pseudo-potentials into the path inte-
gral formalism that gives the electronic density in the quantum sta-
tistical manner as it was described in the Section 4.6.6. This way, a 
strong physical meaning is assured because all the information about 
the electronic density and electronegativity are comprised (and dic-
tated) only by the pseudopotential. Yet, the problem that arises in 
this approach is that the electronic density depends on the thermal β 
parameter. This parameter will be fixed so that the electronic density 
to fulfill the path integral normalization condition. Additionally, the 
search of the β parameter must be done in the semiclassical (high 
temperature) limit (β → 0) for which the path integral formalism 
corresponds to the excited (valence) states of atoms.

• The second approach takes beyond to the pseudopotential data also 
the valence basis and the electronic densities are then computed 
in the accustomed quantum manner. At this point we need to con-
sider the working orbital type for the atomic systems and we will 
chose the s-basis set because its spherical symmetry.

Accordingly, it follows that both electronic density approaches have 
their own parametric dependency. This implies that also the computed 
electronegativity will feature the scaling effect on the electronic den-
sity raised due to the one effective valence electronic approach. With 
this assumption at the background of density computation we should 
recover in the provided electronegativity the real (many) electronic 
valence state by an adequate nomination of the specific values for the β 
and q parameters.

At this point we need a criterion in order to properly control the 
re-scaling procedure. In order to unveil this criterion we are looking back 
on differential electronegativity formula (4.275) that should be seen as the 
kernel function for the Mulliken electronegativity functional (4.279). If 
we observe the analytical places the introduced chemical response indices 
a, b and the chemical action index CA appear, respectively, it can be eas-
ily seen that only the chemical action is coupled with the total number of 
electrons in the concerned state.
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In this respect, while noting the above scaling condition (4.335) as 
being quite restrictive for the scaling factor q, an additional constrain that 
takes into consideration the number of valence electrons is to be regarded. 
This aim is to be accomplished observing that the valence formulation 
atomic electronegativity fits with the definition of chemical action of 
Eq. (4.277) for the Coulombic potential (March, 1993)

(4.338)

with Z being the nuclear charge.
The results for the chemical action (4.338) computed by the two above-

mentioned quantum computational schemes are collected in Table 4.11 
with those for the electronegativity (4.279) in Table 4.12, among other 
significant scales. All data are comparatively represented in Figures 4.15 
and 4.16, respectively.

The proposed electronegativity scale follows the general rules for its 
acceptability [see Section 4.7.2 and Murphy et al. (2000)]. The decreas-
ing of χ along the group is respected (see, for instance, Ga<Al and Ge<Si) 
as well as its difference in going from light to heavy atoms of the same 
group. χ increases left to right across rows taking into account that for 
some heavy elements the relativistic effects, which are not considered in 
the computations, can affect this trend. Correctly, the halogen atoms have 
the highest electronegativity with respect to their left row neighbors.

The adopted PI procedure supports different model potentials. With the 
aim to test the reliability of the present algorithm for the Coulomb potentials 
the Bachelet-Hamann-Schülter pseudopotentials (Bachelet et al., 1982) for 
C, N and O atoms were adopted and their electronegativity values recal-
culated. The results, both for electronegativity and chemical action, are 
reported in Table 4.13. The numerical values are only slightly higher than 
those obtained using Bonn/Stuttgart pseudopotentials and the close relation 
between electronegativity and chemical action values is present, in all cases.

Analyzing these results, it is clear that for the path integral approach 
better correlation between the electronegativity and the chemical action 
trends is obtained as comparing with those arising from the s-basis set 
implementation. The highest discrepancy between the chemical action and 
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TABLE 4.11  The Absolute Atomic Chemical Actions Given by Eq. (4.277)—in Electron-Volts [eV]—Computed by Path Integral (4.294) 
When Only the Pseudo-Potential is Need (The Upper Value for Each Element) and By Pseudo-Potentials + Basis Set Method (The Lower 
Value for Each Element) for Valence Electronic Density Computations (Putz et al., 2005, 2009b)

Li
4.77

3.50

Be
6.05

3.93

B
6.77

6.07

C
8.69

8.44

N
9.73

8.95

O
10.93

10.72

F

11.84

17.80

Ne
10.90

17.60
Na
4.09

3.02

Mg
5.18

3.08

Al
8.73

6.20

Si
5.95

6.71

P
8.38

7.72

S
9.48

10.32

Cl
9.94

12.07

Ar
9.25

13.36
K
3.28

2.91

Ca
4.41

2.47

Sc
2.66

1.76

Ti

3.19

2.46

V
3.78

3.11

Cr
4.71

4.58

Mn
5.41

5.46

Fe
5.35

6.01

Co
5.39

6.49

Ni
5.49

8.62

Cu
5.83

7.01

Zn
4.54

9.10

Ga
3.24

3.24

Ge
5.12

3.58

As
4.53

3.89

Se
9.09

3.65

Br
9.11

5.22

Kr
7.93

5.97
Rb
1.63

1.18

Sr
2.92

1.79

Y
3.04

1.38

Zr
3.57

1.17

Nb
4.34

1.12

Mo

5.08

1.37

Tc
5.06

1.30

Ru
5.36

1.23

Rh
5.65

1.10

Pd
5.86

1.27

Ag
5.86

1.39

Cd
4.76

1.52

In
5.10

2.29

Sn
5.37

2.24

Sb
5.05

4.55

Te
7.53

3.60

I
8.42

4.56

Xe
7.37

5.40
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TABLE 4.12  The Comparative Atomic Mulliken Electronegativities, in Electron-Volts 
[eV] (Putz, 2009b)

Z Element Mulliken-Jaffe(a) Experiment(b) Xα(c) Density Functional 
Equation (4.279)

Path Integral s-Basis Set
3 Li 1.8 3.01 2.58 4.11 3.02
4 Be 4.8 4.9 3.80 5.64 3.40
5 B 5.99 4.29 3.40 5.72 5.66
6 C 8.59 6.27 5.13 8.56 8.58
7 N 11.21 7.27 6.97 10.13 9.77
8 O 14.39 7.53 8.92 11.87 12.41
9 F 12.18 10.41 11.0 13.13 15.60
10 Ne 13.29 - 10.31 13.39 13.37
11 Na 1.6 2.85 2.32 3.16 2.64
12 Mg 4.09 3.75 3.04 4.52 3.93
13 Al 5.47 3.21 2.25 5.80 5.89
14 Si 7.30 4.76 3.60 6.56 6.80
15 P 8.90 5.62 5.01 9.04 8.33
16 S 10.14 6.22 6.52 10.09 11.88
17 Cl 9.38 8.30 8.11 10.64 14.59
18 Ar 9.87 - 7.11 10.12 12.55
19 K 2.90 2.42 1.92 3.15 2.48
20 Ca 3.30 2.2 1.86 4.21 2.19
21 Sc 4.66 3.34 2.52 2.93 1.83
22 Ti 5.2 3.45 3.05 3.52 2.28
23 V 5.47 3.6 3.33 4.19 2.42
24 Cr 5.56 3.72 3.45 5.23 2.72
25 Mn 5.23 3.72 4.33 6.02 2.01
26 Fe 6.06 4.06 4.71 5.96 3.90
27 Co 6.21 4.3 3.76 6.01 3.03
28 Ni 6.30 4.40 3.86 6.12 3.48
29 Cu 6.27 4.48 3.95 6.35 2.91
30 Zn 5.53 4.45 3.66 5.07 3.13
31 Ga 6.02 3.2 2.11 3.49 3.30
32 Ge 6.4 4.6 3.37 5.45 4.24
33 As 6.63 5.3 4.63 4.87 4.94
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Z Element Mulliken-Jaffe(a) Experiment(b) Xα(c) Density Functional 
Equation (4.279)

Path Integral s-Basis Set
34 Se 7.39 5.89 5.91 7.71 4.82
35 Br 8.40 7.59 7.24 7.75 7.35
36 Kr 8.86 - 6.18 8.65 9.59
37 Rb 2.09 2.34 1.79 1.56 1.05
38 Sr 3.14 2.0 1.75 2.87 1.63
39 Y 4.25 3.19 2.25 3.33 1.76
40 Zr 4.57 3.64 3.01 3.92 1.73
41 Nb 5.38 4.0 3.26 4.77 1.68
42 Mo 7.04 3.9 3.34 5.59 2.07
43 Tc 6.27 - 4.58 5.57 1.96
44 Ru 7.16 4.5 3.45 5.91 1.93
45 Rh 7.4 4.3 3.49 6.23 1.72
46 Pd 7.16 4.45 3.52 6.46 1.98
47 Ag 6.36 4.44 3.55 6.47 2.18
48 Cd 5.64 4.43 3.35 5.26 2.36
49 In 5.22 3.1 2.09 5.38 2.48
50 Sn 6.96 4.30 3.20 5.75 2.74
51 Sb 7.36 4.85 - 5.44 6.29
52 Te 7.67 5.49 5.35 6.35 4.98
53 I 8.10 6.76 6.45 7.12 6.70
54 Xe 7.76 - 5.36 7.80 6.27

(a)From Huheey (1978); WebElements (2011).
(b)From Parr and Pearson (1983); Robles and Bartolotti (1984).
(c)From Bartolotti et al. (1980).

TABLE 4.12  Continued

the associated electronegativity within the s-basis set computation appears 
mostly for the first transitional row, see Figure 4.15.

However, we cannot exclude the s-basis set electronegativity scale just 
through comparison between scales since other similar discrepancies appear 
(even in the main groups) when the Mulliken-Jaffe and the Xα methods are 
compared, for instance (see the Table 4.12). In any case, the present s-basis 
set results may help in judging also the various criteria of validity for an 
electronegativity scale, see Section 4.7.2. Looking to the transition metal 
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FIGURE 4.15  The comparative representation of the atomic electronegativities’ values 
computed upon Eq. (4.279) and the corresponding absolute chemical actions—given by 
Eq. (4.277)—using the path integral (PI) and basis set (BS) methods (Putz, 2009b).

FIGURE 4.16  The comparative representation of the atomic electronegativities of 
Mulliken-Jaffe (MJ), experimental (EXP), and transition state (Xα) respecting the chemical 
Mulliken one (4.279) with the recorded values of Table 4.12 by path integral (PI) and basis 
set (BS) methods (Putz, 2009b).
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TABLE 4.13  The Comparative Orbital Electronegativities and the Absolute Chemical Actions for C, N and O Atoms (Putz et al., 
2005, 2009b) 

Orbital (Hybrid) s p sp sp2 sp3

Element Chemical 
Information

Basis 
Set

Path 
Integral

Basis 
Set

Path 
Integral

Basis 
Set

Path 
Integral

Basis 
Set

Path 
Integral

Basis 
Set

Path 
Integral

C Mulliken-Jaffe’s
Electronegativity

8.59 5.80 10.39 8.79 7.98

Electronegativity

Chemical Action

8.58
8.44

8.56
8.69

3.11
3.11

4.04
4.1

10.73
11.43

9.89
10.04

7.53
7.74

6.99
7.1

5.77
5.83

5.71
5.71

N Mulliken-Jaffe’s
Electronegativity

11.21 7.39 15.68 12.87 11.54

Electronegativity

Chemical Action

9.77
8.95

10.13
9.73

5.09
4.80

6.14
5.9

16.97
17.99

17.54
16.86

11.88
12.34

12.40
11.92

9.21
9.35

10.13
9.73

O Mulliken-Jaffe’s
Electronegativity

14.39 9.65 27.25 17.07 15.25

Electronegativity

Chemical Action

12.41
10.72

11.87
10.93

8.06
7.35

8.39
7.73

27.06
28.07

27.40
25.23

18.54
19.48

19.38
17.84

14.48
14.84

15.82
14.57

*All values are in electron-Volts [eV].
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atoms, we underline that the obtained electronegativities fall in a narrow 
range of values compared with those of the main group atoms. The six 
considered metalloid elements (B, Si, Ge, As, Sb, Te), that separate the 
metals from the non-metals, have electronegativity values, which do not 
allow overlaps between metals and non-metals. Furthermore, looking at 
the χ metal values the requirement that they must have electronegativities 
lower than silicon is satisfied (see for example Ga<Si, Al<Si, Ge<Si) fol-
lowing the so-called silicon rule—see the Section 4.7.2. Finally, we briefly 
discuss the values obtained for the N, O, F, Ne, Cl, Ar, Br, and Kr elements 
that present oxidation states lower than their valence electrons. The rule 
in this case states that χ parallels the decreasing in valence electrons. The 
results follow this rule with the exception of the chlorine atom that has a χ 
value higher than the nearest noble gas atom Ar. The electronegativity trend 
for these atoms results in the order Ne>F>O>Cl>N>Ar>Kr>Br.

It is worth to note that the PI treatment does not need the orbital type 
function but only the pseudo-potential representing the field in which the 
electrons move. In order to verify the influence of the different orbital type 
we have redone the electronegativity computation for C, O and N atoms by 
using p-type orbitals and the sp, sp2 and sp3 hybridization states. Results, 
reported in Table 4.13 and Figure 4.17, show how the actual electronega-
tivity formulation preserves also the orbital hierarchy and is sensitive to 
the hybrid orbitals as well. Finally, analyzing Table 4.13 and Figure 4.17 
we underline that the electronegativity trend from a type of hybridization 
to another is similar (Putz et al., 2005, 2009b).

However, it remains to show that the employed chemical action criteria 
(4.338) do not enter in conflict with the type of the orbital choice, when 
this is properly done. For instance, we consider the atomic systems of C, 
N, O with the s- and p-orbital type basis set and also the sp, sp2 and sp3 
hybridization states.

Then, by applying the re-scaling procedure according with the chemical 
action—electronegativity rule (4.338) we get the respective electronega-
tivities and chemical actions for both the path integral and basis set imple-
mentations using the pseudopotential data (Stuttgart Pseudopotentials, 
2011), as shown in Table 4.13 and drawn in Figure 4.17.

They, nevertheless reveal how close the values of the chemical actions 
and corresponding orbital electronegativities are, in general. Such feature 
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FIGURE 4.17  From top to bottom, the representations of the orbital electronegativities 
and of the absolute chemical actions for C, N and O atoms versus the different percent 
contribution of s orbital (p: 0%, sp3: 25%, sp2: 33%, sp: 50% and s: 100%) in pseudo-
potentials and basis set frameworks of electronic densities computation with path integral 
(PI), basis set (BS), and Mulliken-Jaffe (MJ) results of Table 4.13 (Putz et al., 2005, 2009b).
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is susceptible for extension in treating the chemical bonds as will be in 
Volume III of the present five-volume work exposed (Putz, 2009a).

4.7.4 ELECTROPHILICITY SCALE FOR ATOMS IN LONG-RANGE 
(VALENCE) STATES

As an application to atomic systems, the effective Slater atomic model 
will be considered (Slater, 1930; Clementi & Raimondi, 1963; Clementini 
et al., 1967) that is employing the Slater effective charge and the valence 
electrons through the potential (4.312) and the radial electronic density 
for a given quantum (shell) number n and the orbital exponent ξ, related 
with Eqs. (4.317) and (4.131), here as

  (4.339)

nevertheless fulfilling the DFT integration condition to the valence 
electrons

  (4.340)

by applying the Slater integral recipe (4.136).
In these conditions the radial atomic local softness, global softness and 

local chemical hardness become, from Eqs. (4.228), (4.229) and (4.232), 
respectively, as (Putz & Chattaraj, 2013):

  (4.341)

  (4.342)

  (4.343)

Within this analytical context the atomic kernel, local and global elec-
trophilicities of Eqs. (4.238), (4.245) and (4.234) respectively become 
(Putz & Chattaraj, 2013)
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  (4.344)

  (4.345)

  (4.346)

For practical implementation one should finally assure the numerical inte-
gral hierarchy for each atomic system (Putz & Chattaraj, 2013)

  (4.347)

namely through the normalization constant Cω appearing to modulate to 
the correct inter-relationships within the working expressions using the 
Slater orbital approximations.

It is also worth noting that the two constants in Eq. (4.347) are equal for 
each chemical species, and this is also numerically confirmed by the pres-
ent atomic applications as it is implicit for integral hierarchy from kernel 
to local electrophilicity. However, the same normalization constant is still 
necessary respecting the global one since the local to global integral iden-
tity holds with local chemical hardness of Eq. (4.211), see the comment 
around Eq. (4.233), while we are currently implementing its generalized 
version as given by Eq. (4.232) above. Yet, no calibration between refer-
ence and actually computed electrophilicities of Eqs. (4.234) and (4.346) 
are considered (Putz & Chattaraj, 2013).

We present the main results in Table 4.14 where the basic electronega-
tivity and chemical hardness calculated by finite difference approxima-
tions in terms of IP and EA definitions are considered (Lackner & Zweig, 
1983). This is based on two positive arguments: they are based on the 
Parr’s DFT ground state parabola method that is consistent with defini-
tion (4.234) of global electrophilicity; electronegativity under Mulliken 
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TABLE 4.14  Atomic Properties of the First Five Periods of the Periodic System in the Valence Slater States (Slater, 1930; Clementi & 
Raimondi, 1963; Clementini et al., 1967): Principal Quantum Number (n); Orbital Exponent (ξ); Effective Atomic Charge (Zeff); Number of 
Employed [s+p] Valence Electrons (Nv); Electronegativity (4.3) and Chemical Hardness (4.251) based on Experimental Ionization Potential 
(IP) and Electronic Affinity (EA) (Ghosh & Biswas, 2002), Maximum Radii Rmax=n/ξ for Vanishing Radial Distribution of Electronic 
Density (4.339); Reference Electrophilicity ω0 Calculated Using Eq. (4.234); Electrophilicity ω Calculated Using Eq. (4.346); Radial 
Distribution of the Local Electrophilicity of Eq. (4.345) in the Point Rmax; Radial Distribution of the Kernel Electrophilicity of Eq. (4.344) 
in the Spatial Point (Rmax, Rmax), see Putz & Chattaraj (2013).

Atom n ξ Zeff Nv χ [eV] η [eV] Rmax [a.u.] ω0 [eV] ω [eV] ω (Y.Rmax) [eV] ω (Y.Rmax,Rmax) [eV]
H 1 1 1 1 7.18 6.45 1 3.996 2.368 1.086 0.470
He 1 1.7 1.7 2 12.27 12.48 0.588 6.032 13.938 12.486 10.702
Li 2 0.65 1.30 1 3.02 4.39 3.077 1.039 0.663 0.147 0.032
Be 2 0.98 1.95 2 3.43 5.93 2.041 0.992 1.43 0.521 0.184
B 2 1.3 2.60 3 4.26 4.06 1.538 2.235 3.741 1.871 0.913
C 2 1.63 3.25 4 6.24 4.99 1.227 3.902 12.799 8.110 5.056
N 2 1.95 3.90 5 6.97 7.59 1.026 3.200 23.784 18.088 13.612
O 2 2.28 4.55 6 7.59 6.14 0.877 4.691 39.634 35.286 31.193
F 2 2.6 5.2 7 10.4 7.07 0.769 7.649 99.96 101.515 102.599
Ne 2 2.93 5.85 8 10.71 10.92 0.683 5.252 137.356 157.225 179.354
Na 3 0.73 2.20 1 2.80 2.89 4.110 1.356 0.458 0.099 0.021
Mg 3 0.95 2.85 2 2.6 4.99 3.158 0.677 0.818 0.241 0.069
Al 3 1.17 3.50 3 3.22 2.81 2.564 1.845 2.203 0.817 0.297
Si 3 1.39 4.15 4 4.68 3.43 2.158 3.193 7.416 3.293 1.443
P 3 1.6 4.80 5 5.62 4.89 1.875 3.229 15.832 8.118 4.123
S 3 1.8 5.45 6 6.24 4.16 1.667 4.68 27.290 15.762 9.041
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Atom n ξ Zeff Nv χ [eV] η [eV] Rmax [a.u.] ω0 [eV] ω [eV] ω (Y.Rmax) [eV] ω (Y.Rmax,Rmax) [eV]
Cl 3 2.03 6.10 7 8.32 4.68 1.478 7.396 64.845 42.263 27.408
Ar 3 2.25 6.75 8 7.7 8.11 1.333 3.655 71.736 51.835 37.317
K 4 0.59 2.20 1 2.39 1.98 6.780 1.442 0.469 0.071 0.011
Ca 4 0.77 2.85 2 2.29 3.85 5.195 0.681 0.781 0.161 0.033
Sc 4 0.81 3.00 2 3.43 3.22 4.938 1.827 1.665 0.363 0.078
Ti 4 0.85 3.15 2 3.64 3.22 4.706 2.057 1.792 0.411 0.092
V 4 0.89 3.30 2 3.85 2.91 4.494 2.547 1.924 0.463 0.109
Cr 4 0.93 3.45 2 3.74 3.12 4.301 2.242 1.749 0.441 0.109
Mn 4 0.97 3.60 2 3.85 3.64 4.124 2.036 1.791 0.472 0.122
Fe 4 1.01 3.75 2 4.26 3.64 3.960 2.493 2.126 0.584 0.158
Co 4 1.05 3.90 2 4.37 3.43 3.810 2.784 2.175 0.623 0.175
Ni 4 1.09 4.05 2 4.37 3.22 3.670 2.965 2.119 0.631 0.185
Cu 4 1.14 4.20 2 4.47 3.22 3.509 3.103 2.159 0.674 0.207
Zn 4 1.18 4.35 2 4.26 5.2 3.390 1.745 1.919 0.620 0.197
Ga 4 1.35 5.00 3 3.22 2.81 2.963 1.845 2.096 0.784 0.289
Ge 4 1.53 5.65 4 4.58 3.33 2.614 3.150 6.970 2.967 1.251
As 4 1.70 6.30 5 5.3 4.47 2.353 3.142 13.989 6.628 3.118
Se 4 1.88 6.95 6 5.93 3.85 2.128 4.567 24.598 12.899 6.729
Br 4 2.05 7.60 7 7.59 4.26 1.951 6.762 54.011 30.896 17.604
Kr 4 2.23 8.25 8 6.86 7.28 1.794 3.232 57.036 35.499 22.027
Rb 5 0.55 2.20 1 2.29 1.87 9.091 1.402 0.534 0.0686 0.0087

TABLE 4.14  Continued
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Atom n ξ Zeff Nv χ [eV] η [eV] Rmax [a.u.] ω0 [eV] ω [eV] ω (Y.Rmax) [eV] ω (Y.Rmax,Rmax) [eV]
Sr 5 0.71 2.85 2 1.98 3.74 7.042 0.524 0.680 0.1159 0.0195
Y 5 0.75 3.00 2 3.43 2.91 6.667 2.021 1.922 0.347 0.0619
Zr 5 0.79 3.15 2 3.85 3.02 6.329 2.454 2.293 0.436 0.0824
Nb 5 0.83 3.30 2 4.06 2.91 6.024 2.832 2.428 0.488 0.0967
Mo 5 0.86 3.45 2 4.06 3.12 5.814 2.642 2.334 0.487 0.1002
Tc 5 0.9 3.60 2 3.64 3.64 5.556 1.82 1.800 0.394 0.0850
Ru 5 0.94 3.75 2 4.06 3.43 5.319 2.403 2.157 0.494 0.112
Rh 5 0.98 3.90 2 4.26 3.22 5.102 2.818 2.294 0.549 0.129
Pd 5 1.01 4.05 2 4.78 3.64 4.951 3.139 2.808 0.693 0.169
Ag 5 1.05 4.20 2 4.47 3.12 4.762 3.202 2.384 0.613 0.155
Cd 5 1.09 4.35 2 4.16 4.78 4.587 1.810 2.010 0.537 0.142
In 5 1.25 5.00 3 3.12 2.70 4.000 1.803 2.082 0.645 0.198
Sn 5 1.41 5.65 4 4.26 3.02 3.546 3.005 6.256 2.198 0.765
Sb 5 1.58 6.30 5 4.89 3.85 3.165 3.105 12.199 4.812 1.885
Te 5 1.74 6.95 6 5.51 3.54 2.874 4.288 21.606 9.396 4.065
I 5 1.9 7.60 7 6.76 3.74 2.632 6.109 43.385 20.613 9.754
Xe 5 2.06 8.25 8 5.82 6.34 2.427 2.671 41.447 21.356 10.969

R2 ∟ 0.4975 0.3665 0.2633

RMS ∟ 28.977 26.943 28.03

*At the bottom the R2 values and the root mean square (RMS) of errors (residues) between the Parr-Pearson (ω0) and the actual models (ω, ω(Y.Rmax), 
ω(Y.Rmax,Rmax)) are respectively provided (Putz & Chattaraj, 2013).

TABLE 4.14  Continued
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spectroscopic definitions fit with conceptual DFT as earlier established by 
Parr but also with the softness kernel DFT framework (Putz et al., 2005). 
So, the so-called experimental electronegativity based on average of IP 
and EA may be appropriately considered as modeling the actual electro-
philicity expressions too.

Worth noting that electronegativity and chemical hardness in Table 4.1 
are slightly different values from those considered by Pearson (1988a) and 
then by Parr and Yang (1989), especially due electronic affinities consid-
ered, as provided by Lackner and Zweig (1983) through employing the 
same IPs (Moore, 1970) yet combined with electronic affinity through a spe-
cific interpolation-extrapolation formulation to achieve the iso-electronic 
series through periods, as relaying on a classical residual charge method 
(Ginsberg et al., 1958). Better hardness values (Cárdenas et al., 2011) 
compare favorably (Putz & Chattaraj, 2013).

Table 4.14 presents the global results of atomic reference “0” elec-
trophilicity of Eq. (4.234) along the present computed electrophilicity 
of Eq. (4.346), and the particular values of the local and kernel electro-
philicities of Eqs. (4.344) and (4.345) to the maximum radius (Rmax) of 
each atomic system obtained through canceling its radial distribution of 
the valence shell density (Ghosh & Biswas, 2002). Graphical comparison 
among these quantities is made in Figure 4.18 with remarkable features 
namely (Putz & Chattaraj, 2013):

• Reference electrophilicity is usually below both electronegativity 
and chemical hardness on which it relies, according to Eq. (4.234);

• Actual global electrophilicity resembles the reference one espe-
cially for the transition elements’ contractions with a clear periodical 
behavior. In general in a period the alkali metal atom is the least 
electrophilic and the halogen atom is the most electrophilic. Since χ 
is not calculated through the Slater approach, two different ways of 
calculating χ and η may be the possible reason behind the observed 
unusual ω trends in certain cases.

• Overall, reference and actual global electrophilicities do not statis-
tically correlate better than the Pearson correlation factor R2=0.5, 
and systematically goes downwards with the local and kernel forms 
as of R2=0.37 and R2=0.26, while with root mean squared of resi-
dues in the restrained range of 27÷29 [eV] the present models are 
validated as stable ones, see the bottom of Table 4.14, respectively. 
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FIGURE 4.18  Atomic scales of reference, actual global, local at Rmax and kernel at 
(Rmax, Rmax) electrophilicities, as computed by Eqs. (4.234), (4.346), (4.345), and (4.344), 
respectively, with the values of Table 4.14 (Putz & Chattaraj, 2013).
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However, hierarchical upwards correlation is recorded between 
actual computed global electrophilicity and the local and kernel ones 
taken in the Rmax points of each atomic valence shell

 R2[ω(Rmax,Rmax), ω(Y.Rmax)]=0.967 > R2[ω(Rmax), ω]=0.926 (4.348)

according to the successive integration hierarchy of Eq. (4.347), and 
superior to the double integral hierarchy when the correlation factor 
is recorded as:

 R2[ω(Rmax,Rmax), ω]=0.806 (4.349)

• The kernel and local electrophilicities at Rmax are always below the 
global one, as expected from their hierarchical formulae, except for 
the first period noble element (Ne) and halogen (F) where the values 
are in reverse order namely

 ωF/Ne(Rmax,Rmax) > ωF/Ne(Rmax) > ωF/Ne (4.350)

due the very strong electrostatic confinement (shrinking the valence 
electronic cloud) causing the increasing of the electrophilicity kernel 
as the bilocal holding power of electrons.

The last behavior is checked also for general local and kernel electro-
philicity shapes and in Figure 4.19 it is represented for the first period of 
elements: it follows that in terms of their own global electrophilicities both 
F and Ne kernel and local electrophilicity surpass unity however produc-
ing sharper peaks in radial space representation. Nevertheless the increas-
ing tendency along periods is always fulfilled as well as the decreasing 
down the groups, e.g., Figure 4.20 for halogens, in radial space representa-
tions of local and kernel electrophilicities (Putz & Chattaraj, 2013).

The present approach may be complemented with other works in which 
also input electronegativity in Eqs. (4.344)–(4.346) is expressed in the 
same context of DFT softness kernel, with various systematic forms in 
terms of the atomic valence shell Slater quantities as effective charge and 
orbital exponent (Putz, 2006). Equally, since the present approach strongly 
relies on associated chemical hardness, local-to-global hierarchies may be 
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FIGURE 4.19  Local and kernel radial distributions of electrophilicities of Eqs. (4.345) and (4.344), respectively, for the valence atoms of 
the first period of elements (Putz & Chattaraj, 2013).



Periodicity by Peripheral Electrons and D
ensity in C

hem
ical A

tom
 

301

FIGURE 4.20  Local and kernel radial distributions of electrophilicities of Eqs. (4.345) and (4.344), respectively, for the valence states of 
halogen atoms (Putz & Chattaraj, 2013).
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extracted towards application of specific principles of hard- and soft-acids 
and bases (Parr & Pearson, 1983; Pearson, 1973, 1990, 1997) and maxi-
mum hardness principles (Pearson, 1987, 1993; Parr & Chattaraj, 1991; 
Chattaraj et al., 1995; Ayres & Par, 2000; Chattaraj et al., 2000) to vari-
ous levels of site selectivity (local or kernel), so that providing more fun-
damental working analytical tools for chemical hardness than the global 
finite difference based one.

4.8 ATOMIC SCALES AND PERIODICITY BY ATOMIC RADII

4.8.1 RADII-ELECTRONEGATIVITY RELATIONSHIPS

Introducing the atomic orbital radii should be seen more than a definition. 
That is because this quantity is an effect of the atomic structure being 
strongly related with the atomic configuration, so to speak with the atomic 
stability. Rather than to define it is worthwhile to derive the atomic orbital 
radii from another chemical descriptor that closely takes account of the 
number of electrons and the stability (the potential equilibrium) of the 
atomic electronic system. Here it is chosen to take the Mulliken electro-
negativity (χM) as the basic chemical descriptor for the atomic electronic 
system founded in an equilibrium structure so that the stability is assumed, 
from which will be extracted the information regarding the atomic orbital 
radii (R). Even there are many scales of electronegativity there can be 
classified into the classical and modern ones. For our purpose here we 
convene to speak about the class of the electronegativity scales that makes 
directly the atomic radius dependence and the modern electronegativity 
scales that mostly are focused on the dependency of the electronic den-
sity. Beside their age the classical analytical electronegativity scales pro-
vides the first useful tool to compute the atomic orbital radii because their 
explicit dependence of the spatial coordinate at equilibrium (stabile) elec-
tronic structure (Putz, 2012b,c).

The first such scale that is appealed here assumes that electronegativ-
ity should be regarded as the electrostatic force between the outermost 
electron that define the atomic radius and the core of the atomic structure 
with the effective nuclear charge (Zeff), namely Allred-Rochow scale with 
the form, see Eq. (4.5) (Allred & Rochow, 1958)
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  (4.351)

where Zeff are calculated for each individual atomic core structure accord-
ing to the Slater’s rules (Slater, 1930).

A further step of complication is made in the Boyd and Markus (1981) 
scale, in which the electronegativity remains identified with the electro-
static force but presenting a correction concerning the radial electronic 
density, ρ(x), with the working form, see also Eq. (4.6)

  (4.352)

where the original atomic number Z is here replaced with the effective 
nuclear charge in order to emphasis the corrected density term that appears 
respecting with the simpler Allred-Rochow previous formulation. It should 
be noted that in the Boyd-Markus scale appears the explicit dependency 
on the electronic density as a precursor of density functional form, but 
preserving the force character of the electronegativity.

We turn now to the modern ideas in electronegativity up to the cele-
brated density functional theory, that assumes that all (necessary) informa-
tion about an electronic system is comprised in its density, and where the 
electronegativity is considerate as a potential with the ultimate identifica-
tion as the negative chemical potential of the system (χ = − μ) according 
with the Parr’s works (Parr et al., 1978). In this modern framework, first 
we can make more valuable the study of Ghanty & Ghosh (1996) that 
has suggested a simple analytical electronegativity dependence of both 
electronic density and its gradient. Because the above stipulated potential 
nature of electronegativity we consider the present working formulation of 
Mulliken electronegativity to be

  (4.353)

It is clear from this formulation that if we read electronegativity equa-
tion starting with the right hand of it we get the consistency of the pres-
ent picture: when the competition between the density and its gradient 
approaches the atomic radius limit (the HOMO radius) then the equivalent 
potential of the evolved electrons identifies the Mulliken electronegativity 
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ones. The factor (1/3) was added for the purpose that will be revealed in 
the next section.

This way the derivation of atomic radius reclaims the gradient count-
ing of the valence electronic density that approach the equilibrium limit 
around the HOMO radii. We now will consider another Mulliken electro-
negativity density functional for an N-electronic system that moves under 
the external potential action V(r) that could be identify with the nuclear or 
atomic core action over the actual electronic system employing the soft-
ness density functional form (S-DFT) form (4.279) to the explicit casting 
(Putz et al., 2003; Putz, 2006):

(4.354)

so that having also another integral equation for atomic radii once an elec-
tronegativity scale is given.

4.8.2 ATOMIC RADII FOR UNIFORM VALENCE DENSITY

It is clear from previous section that in order to derive the atomic radii it is 
necessary to solve the equations regarding the Mulliken electronegativity in 
the different scales presented. However, from the Allred-Rochow electronega-
tivity scale is quite simple to get the atomic radii with the form (Putz, 2012b,c)

  (4.355)

The problem appears when we like to solve above electronegativity 
equations respecting the atomic radii R, because the appearance of the 
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unspecified electronic density. To have an analytical general expression 
for the electronic density in a given external potential states as the main 
challenge in the quantum chemistry. As much as our main purpose here is 
not a numerical method for computing electronic density, but having need 
of an analytical expression of it, we are constrained to restrict ourselves 
to an approximation. As the density functional theory prescribes, if for the 
derivation of electronic density we will choose the most simple, classi-
cal, way of writing the density appealing the mass-volume relation in an 
isotropic atomic structure, then the density and the effective potential are 
seen as uncorrelated quantities that preclude bonding. Thus, our atomic 
density model assumes the form (March, 1992)

  (4.356)

sytisfying the minimal requires  with A being the 
relative atomic weight.

Of course we cannot give rigorous (quantum) arguments for the above 
proposed density formula, but we can justify it, for instance by replacing 
it into Ghanty-Ghosh electronegativity that gives us the atomic radii cor-
related with Mulliken electronegativity under the form

  (4.357)

that recovers the (St. John and Bloch, 1974) electronegativity scale. The 
obtained the result justifies the anticipated factor (1/3) in the Ghanty-
Ghosh equation. This atomic radius derivation claims that the above pro-
posed density working function, even in a simple manner, has its own 
efficacity. More, it provides a quickly estimation of atomic properties in 
terms of atomic relative weight.

Returning to the classical electronegativity estimations, Boyd-Markus 
above formulation can be further developed with the radial electronic den-
sity having the above homogeneous form. Arranging the terms as an equa-
tion respecting to atomic radii we arrive at the equality:

  (4.358)



306 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

At this point we like to simplify the fourth order equation, because the 
small numerical values of atomic radii, but in the present case we are not 
allowed. This, because canceling the fourth order radius term we loose the 
connection with the information comprised in the Mulliken electronega-
tivity, and more, the remaining equation will give an imaginary result that 
is false. Thus we must to solve the entirely fourth-order Boyd-Markus 
radii equation that will provide the acceptable result as being

  (4.359)

The final atomic radii equation that has to be solved in terms of Mulliken 
electronegativity is authors’ formulation above. However, before to arrive 
at the effective atomic radius equation, it should be first transformed 
according to the forms of atomic potential and associate homogeneous 
density. Performing this substitutions for the main ingredients of S-DFT 
electronegativity expression (4.354) we get successively (Putz, 2012b,c):

  (4.360)

  (4.361)

  (4.362)

  (4.363)

With these expressions it is clear that in S-DFT (4.354) equation appears 
factors of the form:

 , , and  (4.364a)

with

  and  (4.364b)
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From the dimension perspective of atomic radii, we can further apply the 
first order series expansion respecting to R → 0, that means the truncations

 ,  (4.364c)

With all this considerations, S-DFT (4.354) expression takes the interme-
diate form

(4.365)

and respectively the final one

  (4.366)

In order to analyze properly this formula, first we should remark that in 
the above used limit R → 0 the third term in last expression does not con-
tribute significantly to the Mulliken electronegativity and will be omitted. 
The remaining formula (Putz, 2012b,c)

  (4.367)

can be seen as a new Mulliken electronegativity formula, in terms of 
atomic radii, nuclear efective charge and the total number of electrons 
in the valence shell. It is obvious that the present result look like a com-
bination between the classical and modern approaches of electronegativ-
ity as far as both force and potential terms have a contribution. Also an 
interesting aspect is that the classical force term is corrected by the mod-
ern N-dependence in order to can be properly combined with the admited 
potential modern formulation. This meaningful result can also justify the 
present semi-classical approach when the modern chemical softness based 
density functional electronegativity expression is mixed with the classical 
atomic density model.

However, from S-DFT (4.354) radii equation is now immediately to 
derive the atomic radii solving an ordinary squared equation with the solu-
tions (Putz, 2012b,c)
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  (4.368)

There are two problems with this solution. The first arise because there are 
two allowed radii for each set .

The second one regards both radii because in the different value 
scales of the Mulliken electronegativity it can be possible to obtain an 
imaginary component when the square root is performed for a given set 
(N, χM). In order to avoid both problems in one step we propose to take 
as the present atomic radii the combination between the two radii solu-
tions in the form

  (4.369)

that gives the obvious final S-DFT (4.354) result as

  (4.370)

The derived Allred-Rochow, Ghanty-Ghosh, Boyd-Markus and S-DFT 
relations define the atomic orbital radii scales under attention that will be 
computed, compared and interpreted for the main atoms from the periodic 
system in the next discussion.

Our main goal though these derivations were to obtain a list of atomic 
orbital radii analytically correlated with the electronegativity. Once that 
this list was laid out, i.e., by the present Allred-Rochow, Ghanty-Ghosh, 
Boyd-Markus and S-DFT relations, we have the freedom to compute 
numerical these scales in combination with any available electronegativ-
ity atomic scale.

We will choose here two extreme electronegativity scales respectively 
the sources of their determinations. One is simply the experimental (EXP) 
atomic electronegativity scale (Pearson, 1988a; Hati & Datta, 1995) that 
should be always presented as the standard practical comparison. The sec-
ond one will be choosen in a theoretical fashion to establish the balance 
between the theoretical and experimental results. At this point we appeal to 
the analytical S-DFT (4.354) electronegativity where the effective poten-
tial is replaced with the corresponding pseudopotential together with the 
respective basis set, which imposes the associated electronic density for 
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each atomic system for its electronic valence shell (Parr & Pearson, 1983; 
Robles & Bartolotti, 1984; Pearson, 1997). Performing all needed com-
putations the final numerical Mulliken electronegativities values outlined 
in this manner will be generically called the basis set (BS) electronegativ-
ity scale (Putz et al., 2005, 2009b). The two Mulliken electronegativity 
numerical scales are displayed in the Table 4.12 for the first four periods 
of the periodic system of elements.

Further, the atomic radii scales within the basic set and experimental 
electronegativity scales will be calculated with the results presented cor-
respondingly in the columns <1> to <8> in the Table 4.15. Additionally, 
there are presented in the columns <9> and <10> of the Table 4.15 the 
direct experimental evaluation (Web Elements, 2011), and the ab initio 
approaches (Ghanty & Ghosh, 1996), for atomic radii. In this way the 
respectively atomic radii scales computed indirectly using primary experi-
mental and theoretical (in a pseudopotential manner) electronegativity 
information are finally compared with the direct experimental and theo-
retical (in an ab inition fashion) atomic radii determinations making this 
way a complete view of the comparison perspective. For this reasons we 
will analyze each two atomic radii outlined scales with those direct experi-
mental and theoretical values.

For instance, if we like to compare the Allred-Rochow atomic radii scale 
within the experimental electronegativity implementation, column <1>, 
with the experimental direct atomic radii evaluations, column <9>, we see 
a clear discrepancy in the numbers as well as in their comparative trend, 
atom by atom. The same conclusions appears from the comparison between 
the columns <1> and <10>. These comparisons are relevant for our next 
step in interpretation, because in the Allred-Rochow scale, it was not used 
the present simple isotropic electronic density, so that no approximation is 
involved here. Of course here it should be said that the Allred-Rochow scale 
assumes electronegativity identifies electrostatic force and then the error is 
explicable. Then, we proceed to the same comparison with the proposed 
Ghanty-Gosh electronegativity scale that considers electronegativity as the 
potential, which finally equivalents with the St. John-Bloch electronega-
tivity scale as well. In this case the comparison between the columns <5> 
and <9> produce the same puzzling one to one uncorrelations and more 
than that, also the magnitude of the St. John-Bloch atomic radii scale does 
not fit with the experimental values (column <9>). Similar conclusions are 
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TABLE 4.15  Values of Atomic Orbital Radii in Different Levels of Estimations 
(Putz, 2012b)

Sources

Elements

Allred-
Rochow

Boyd-
Markus

Ghanty-
Ghosh

S-DFT literature

<1>

EXP

<2>

BS

<3>

EXP

<4>

BS

<5>

EXP

<6>

BS

<7>

EXP

<8>

BS

<9>

EXP

<10>

AB INITIO
Li 1.81 1.81 1.87 1.87 4.78 4.76 0.78 0.77 1.67 2.69
Be 1.74 2.09 1.82 2.16 2.94 4.23 0.71 1.03 1.12 1.79
B 2.15 1.86 2.22 1.96 3.35 2.54 1.09 0.82 0.87 1.47
C 1.99 1.70 2.07 1.80 2.29 1.68 0.93 0.68 0.67 1.12
N 2.02 1.74 2.12 1.86 1.98 1.47 0.97 0.72 0.56 0.91
O 2.14 1.67 2.25 1.8 1.91 1.16 1.09 0.66 0.48 0.80
F 1.95 1.59 2.09 1.75 1.38 0.92 0.9 0.6 0.42 0.68
Ne 2.03 1.82 2.17 1.98 1.33 1.08 0.97 0.79 0.38 0.59
Na 2.42 2.52 2.56 2.65 5.05 5.45 1.39 1.5 1.90 2.80
Mg 2.41 2.35 2.55 2.50 3.84 3.66 1.37 1.30 1.45 2.13
Al 2.88 2.13 3.02 2.30 4.48 2.44 1.96 1.06 1.18 2.29
Si 2.58 2.15 2.73 2.33 3.02 2.12 1.57 1.10 1.11 1.83
P 2.55 2.09 2.72 2.29 2.56 1.73 1.54 1.03 0.98 1.54
S 2.58 1.87 2.76 2.09 2.31 1.21 1.57 0.82 0.88 1.35
Cl 2.37 1.78 2.57 2.03 1.73 0.99 1.32 0.75 0.79 1.19
Ar 2.55 2.23 2.77 2.46 1.82 1.39 1.54 1.17 0.71 1.06
K 2.63 2.60 2.84 2.81 5.95 5.80 1.63 1.60 2.43 3.36
Ca 3.14 3.15 3.32 3.33 6.54 6.57 2.33 2.34 1.94 2.70
Sc 2.61 3.52 2.85 3.72 4.31 7.86 1.61 2.95 1.84 2.55
Ti 2.64 3.24 2.88 3.45 4.17 6.31 1.64 2.48 1.76 2.44
V 2.64 3.22 2.90 3.44 4 5.95 1.65 2.45 1.71 2.35
Cr 2.66 3.11 2.92 3.34 3.87 5.29 1.66 2.28 1.66 2.28
Mn 2.71 3.69 2.98 3.91 2.87 7.16 1.74 3.22 1.61 2.21
Fe 2.65 2.71 2.93 2.98 3.54 3.67 1.65 1.73 1.56 2.09
Co 2.63 3.13 2.92 3.39 3.34 4.75 1.63 2.32 1.52 2
Ni 2.65 2.98 2.93 3.24 3.27 4.13 1.66 2.09 1.49 1.92
Cu 2.67 3.31 2.97 3.58 3.21 4.94 1.69 2.59 1.45 1.85
Zn 2.73 3.25 3.03 3.53 3.23 4.6 1.75 2.5 1.42 1.79
Ga 3.45 3.40 3.73 3.68 4.50 4.36 2.81 2.72 1.36 2.23
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Sources

Elements

Allred-
Rochow

Boyd-
Markus

Ghanty-
Ghosh

S-DFT literature

<1>

EXP

<2>

BS

<3>

EXP

<4>

BS

<5>

EXP

<6>

BS

<7>

EXP

<8>

BS

<9>

EXP

<10>

AB INITIO
Ge 3.06 3.18 3.37 3.49 3.13 3.39 2.21 2.4 1.25 1.88
As 3.01 3.12 3.33 3.43 2.71 2.91 2.14 2.29 1.14 1.65
Se 3 3.31 3.33 3.63 2.44 2.99 2.12 2.59 1.03 1.49
Br 2.76 2.81 3.12 3.16 1.90 1.96 1.8 1.86 0.94 1.35
Kr 3 2.96 3.35 3.31 2.06 2 2.12 2.06 0.88 1.24
Rb 2.68 3.99 3.06 4.29 6.15 13.7 1.69 3.76 2.65 3.54
Sr 3.29 3.65 3.64 3.97 7.19 8.83 2.56 3.14 2.19 2.93
Y 2.68 3.6 3.07 3.94 4.51 8.18 1.69 3.07 2.12 2.72
Zr 2.57 3.72 2.98 4.05 3.95 8.31 1.56 3.28 2.06 2.60
Nb 2.51 3.87 2.93 4.19 3.60 8.56 1.48 3.53 1.98 2.51
Mo 2.59 3.56 3.02 3.92 3.69 6.95 1.59 3 1.90 2.43
Tc - 3.74 - 4.09 - 7.34 - 3.3 1.83 2.37
Ru 2.52 3.85 2.96 4.2 3.2 7.46 1.5 3.49 1.78 2.25
Rh 2.63 4.15 3.07 4.49 3.35 8.37 1.63 4.08 1.73 2.16
Pd 2.63 3.95 3.08 4.31 3.23 7.27 1.60 3.68 1.69 2.08
Ag 2.68 3.83 3.14 4.20 3.24 6.60 1.70 3.46 1.65 2.02
Cd 2.77 3.75 3.23 4.14 3.32 6.1 1.81 3.31 1.61 1.96
In 3.50 3.92 3.92 4.30 4.64 5.80 2.9 3.62 1.56 2.41
Sn 3.16 3.96 3.61 4.35 3.35 5.25 2.36 3.71 1.45 2.10
Sb 3.14 2.76 3.60 3.25 2.97 2.29 2.34 1.8 1.33 1.89
Te 3.10 3.76 3.58 4.19 2.62 3.85 2.28 3.34 1.23 1.73
I 2.93 2.94 3.42 3.43 2.13 2.15 2.02 2.04 1.15 1.60
Xe 3.22 3.16 3.70 3.65 2.37 2.29 2.44 2.37 1.08 1.49

TABLE 4.15  Continued

outlined when whatever from the columns <1> to <8> are compared with 
the columns <9> and <10> (Putz, 2012b,c).

At this stage we can’t conclude that the electronegativity scales are not 
correctly chosen, even that their analytical forms display an approxima-
tion per se, but the method one-to-one of comparison between the different 
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scales can be improved. Then is better to talk about the global trend of this 
scales from where we can easily see which of the presented analytical dis-
course approaches closer reality.

In order to have a suitable tool for validation of a given atomic radii 
scale, we can appeal the regression methods for representing the poly-
nomial fit of the individual atomic radii scale respecting with the atomic 
number. In order not to skip the consistency of the comparison, even when 
we deal with the polynomial regression method, we like to reproduce 
both the global and local trend of each atomic radii scale. To work this, 
so-called, auto-correction method a high degree in polynomial regression 
is required up to that the best cover for all the local one-after-one trend in 
atomic radii scales is obtained (Putz, 2012b,c).

For the atomic radii given in the Table 4.15, for each scale in each 
method, was found that the 20 degree polynomials get the best fit with the 
local atomic radii trend. For having reasonably comparison is compulsory 
to deal with the same degree in all polynomials that fit the scales of atomic 
radii data (Putz, 2012b,c).

Regarding the global atomic radii trend this should be simply modeled 
by the first degree in polynomial regression, namely the celebrated linear 
regression method. Both 20 and one degree polynomials are presented in the 
Figure 4.21 to Figure 4.25 performing such regressions for each atomic radii 
scale in both (direct and indirect) experimental and theoretical approaches. 
The dotted lines around the linear regression fittings comprise mainly 
atomic radii data and associated local polynomial with the 95% confidence. 
The linear regression fits are summarized for all atomic radii scales on their 
respective linear equations displayed on the top of each pictures. In each 
case these linear equations can be seen as the regression definition of the 
atomic radii scale, because the first order dependency in atomic numbers, 
the same proportionality that is obtained when the atomic radii are derived 
from the electronegativity as the potential quantity (Putz, 2012b,c).

Looking now to Figures 4.21–4.25 only at the local polynomial fits we 
better see the acceptable trend of each atomic radii scales that smoothly 
increase between periods and decrease inside them within the system of 
elements. Thus, from the polynomial regression methods’ point of view the 
presented atomic radii throughout the analytical electronegativity scales 
have all necessary qualities (global and local) to constitute the working 
atomic scale whenever the analytical reasons demands (Putz, 2012b,c).
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FIGURE 4.21  Global (linear) and local (high order polynomial) regressions plots for 
atomic radii using Allred-Rochow electronegativity’s scale with experimental (left) and 
basis set pseudopotential (right) Mulliken values; after Putz (2012c).

FIGURE 4.22  Global (linear) and local (high order polynomial) regressions plots for 
atomic radii using Boyd-Markus electronegativity’s scale with experimental (left) and 
basis set pseudopotential (right) Mulliken values; after Putz (2012c).

FIGURE 4.23  Global (linear) and local (high order polynomial) regressions plots for 
atomic radii using St. John-Bloch electronegativity’s scale with experimental (left) and 
basis set pseudopotential (right) Mulliken values; after Putz (2012c).
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FIGURE 4.24  Global (linear) and local (high order polynomial) regressions plots for 
atomic radii using the S-DFT (4.354) derived electronegativity’s scale with experimental 
(left) and basis set pseudopotential (right) Mulliken values; after Putz (2012c).

FIGURE 4.25  Global (linear) and local (high order polynomial) regressions plots for 
atomic radii abstracted from experimental (left) and ab initio (right) direct determinations; 
after Putz (2012c).

Finally we like to conclude about the comparison between present ana-
lytical scales with experimental and ab initio ones using the regression plots.

In order to do this we present the Figures 4.26–4.29, where both lin-
ear and 20 degree polynomials are compared two-by-two for each atomic 
radii (intermediates by electronegativities) with those directly evaluated. 
Starting with the analyze of local polynomials there is turning out that with 
little discrepancies the local regression trends, all atomic radii scales are 
quite similar despite their range diversity. This can be best visualized in 
the Figure 4.26 where Ghanty-Ghosh (St. John-Bloch) atomic radii (using 
experimental and basis set electronegativity) scales are compared with 
the direct (experimental and ab initio) ones. Passing to the linear (global) 
regression plots another class of common interesting features are revealed. 
First, between all global plots for the numerical values computed with the 
help of analytical atomic radii scales, <1> and <2>, <3> and <4>, <5> and 
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FIGURE 4.26  Comparison between atomic radii scales derived from Allred-Rochow 
(<1> and <2>) electronegativity scale and those direct derived by experimental (<9>) and 
ab initio (<10>) methods concerning their global (left) and local (right) regressions’ trend ; 
after Putz (2012c).

FIGURE 4.27  Comparison between atomic radii scales derived from Boyd-Markus 
(<3> and <4>) electronegativity scale and those direct derived by experimental (<9>) and 
ab initio (<10>) methods concerning their global (left) and local (right) regressions’ trend ; 
after Putz (2012c).

FIGURE 4.28  Comparison between atomic radii scales derived from Ghanty-Ghosh 
(or St. John-Bloch) (<5> and <6>) electronegativity scale and those direct derived by 
experimental (<9>) and ab initio (<10>) methods concerning their global (left) and local 
(right) regressions’ trend; after Putz (2012c).
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<6>, <7> and <6>, appears a crossing in the atomic number range (Ghosh 
& Biswas, 2002). In all this cases, the basis set atomic radii scales display 
global plots with a higher slope compared with ones based on the experi-
mental electronegativity values (Putz, 2012b,c).

A special interesting feature shows the actual S-DFT (4.354) atomic 
radii scale represented in the Figure 4.27 as a regression in a comparative 
way with those of direct experimental <9> and ab initio <10> founded 
atomic radii scales. More precisely, the global fit <7> of the atomic radii 
scale, based on the experimental electronegativity values, displays an 
intermediate trend comprised between the corresponding linear fits <9> 
and <10> of the reference direct experimental and ab initio atomic radii 
scales, respectively. This means that the actual atomic S-DFT (4.354) radii 
formula is situated at least from a global regression point of view between 
the experimental values and the most powerful ab initio output values 
when also the experimental electronegativity data are used as the primary 
information. Moreover, the advantage of the present S-DFT (4.354) atomic 
radii formula is that it correlates directly with the electronegativity in the 
base on an analytical deduction within the DFT (Putz, 2012b,c).

4.8.3 RADII SCALES WITH SLATER DENSITY FOR VALENCE 
ATOMIC STATES

The iso-electronic density picture has revealed in the previous section 
quite simple and analytical relations for computing atomic radii, but with 
the price of a lot of approximations and considerations. In this section we 

FIGURE 4.29  Comparison between atomic radii derived from the S-DFT (4.354) scales 
(<3> and <4>) and those direct derived by experimental (<9>) and ab initio (<10>) methods 
concerning their global (left) and local (right) regressions’ trend; after Putz (2012c).
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propose a more rigorous treatment of both electronic density and atomic 
radii, within the Slater orbital description, but instead with the price that 
in most cases one analytical expression cannot be given, being necessary 
a numerical solutions. Starting with evaluations, it is certain that Allred-
Rochow scale cannot support such Slater particularization. Boyd-Markus 
formulation permits instead the evaluation of density integral with the 
implementation of electronic Slater expression.

As previously mentioned, in the approach that correlates atomic radii 
with the electronegativity it is of fundamental importance to know the 
atomic electron density of a given system. In this respect, a suitable treat-
ment is based on the Slater orbital electronic picture that produces the 
normalized distribution functions under the radial form (Slater, 1964):

  (4.371)

with n being the principal quantum number and ξ the orbital exponent. 
Performing the integral between the same limits as in the previously, we 
get (Putz, 2012b,c):

(4.372)

where Γ[z] stands for Euler gamma function and Γ[z, y] for the incom-
plete gamma function. However, we further proceed with the allowed limit 
R→0 that also transforms expressions into more suitable ones for alge-
braic manipulation. Thus, we get the equivalent expressions:

  (4.373)

  (4.374)

where the last identity can be seen as the definition equation for the STO 
version of atomic radii from Boyd-Markus electronegativity formulation.

A more simplified expression is getting out if we combine the STO den-
sities with the electronegativity formulation suggested by Ghanty-Ghosh. 
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In this case it is found another analytical expression for the atomic radii 
scale, namely (Putz, 2012b,c):

  (4.375)

At last, it is exploited the S-DFT (4.354) relation regarded as the electro-
negativity scale derived from the density functional first principles. Again, 
because of the complexity of expression, it seems that no analytical for-
mulation is available for the atomic radii definition. However, an equation 
can be formulated following the same procedure as for the atomic radii 
based on the Boyd-Markus electronegativity picture. For doing this it is 
enough to identify the main ingredients that appear in the chemcical soft-
nes based electronegativity density functional.

With the help of STO expressions we can integrate and take the first 
order expansion in the limit R→0 out these terms, classified as chemical 
response indices (Putz, 2012c),

(4.376)

(4.377)
and the chemical action index:

  (4.378)
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Finally, the desired equation for the atomic radii relating with the electro-
negativity has the actual form:

  (4.379)

The last equation will give the atomic radii scale in the framework of den-
sity functional approach with the STO electronic density implementation.

Summarizing, the working atomic radii scales within the STO electronic 
density picture in atoms are generated equating the expressions Boyd-Markus 
and S-DFT and respectively by analytical Ghanthy-Ghosh expression.

Let’s start with the observation that the STO electronic density was con-
siderate to be normalized to but within the STO atomic radii scales (related 
electronegativity) group, <3> for Boyd-Markus, <5> for Ghanty-Ghosh 
and <7> for S-DFT scales, the N-dependence was explicitly and particu-
larly nominated for each atomic system, according with the Table 4.16 
above. This procedure is correct because the considerate STO density was 
associated with the outermost electron (taken from infinity and becoming 
the last electron in the N-electronic atom) under the influence of the core 
atomic system (Zeff). This approach describes reasonable the one-electron 
behaviors in the N-electronic bath (last electron included) (Putz, 2012c).

Turning to the individual analyze of STO atomic radii scales, it is obvi-
ous from the columns <3>, <5> and <7> in the Table 4.16, that both local 
and global periodicity in all STO scales is fulfilled.

However, arriving at the moment of comparison with another STO 
density non-related electronegativity method, we mention the recent work 
of Ghosh & Biswas (2002). In that work using the STO electronic repre-
sentation it was derived the atomic radii scales trough the equation:

  (4.380)
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TABLE 4.16  Atomic Radii Scales as Computed From Related Electronegativity 
Methods, within the Slater (STO) Electronic Density Picture (Putz, 2012c)

Sources 
Elements

<3> 
Boyd-Markus 
STO

<5> 
Ghanty-Ghosh 
STO

<7> 
S-DFT STO

<8> 
Ghosh-Biswas 
STO

Li 1.07 1.78 1.24 1.63
Be 0.71 1.19 0.82 1.09
B 0.54 0.87 0.62 0.81
C 0.43 0.70 0.49 0.65
N 0.36 0.58 0.41 0.54
O 0.31 0.49 0.35 0.46
F 0.27 0.44 0.31 0.41
Ne 0.24 0.39 0.27 0.36
Na 1.23 2.34 1.36 2.16
Mg 0.95 1.80 1.05 1.67
Al 0.77 1.43 0.85 1.36
Si 0.65 1.22 0.72 1.15
P 0.56 1.06 0.62 0.99
S 0.50 0.94 0.55 0.87
Cl 0.44 0.84 0.49 0.78
Ar 0.40 0.75 0.44 0.71
K 1.87 3.88 2.03 3.56
Ca 1.43 2.9 1.56 2.75
Sc 1.36 2.83 1.48 2.61
Ti 1.30 2.69 1.40 2.49
V 1.24 2.57 1.35 2.37
Cr 1.19 2.46 1.29 2.27
Mn 1.14 2.35 1.23 2.18
Fe 1.09 2.26 1.19 2.09
Co 1.05 2.18 1.14 2.01
Ni 1.01 2.10 1.10 1.93
Cu 0.97 2 1.05 1.86
Zn 0.94 1.93 1.02 1.8
Ga 0.82 1.64 0.89 1.57
Ge 0.72 1.46 0.78 1.39
As 0.65 1.32 0.70 1.24
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Sources 
Elements

<3> 
Boyd-Markus 
STO

<5> 
Ghanty-Ghosh 
STO

<7> 
S-DFT STO

<8> 
Ghosh-Biswas 
STO

Se 0.59 1.19 0.64 1.13
Br 0.54 1.11 0.58 1.03
Kr 0.50 1.01 0.54 0.95
Rb 2.36 5.22 2.54 4.81
Sr 1.84 3.93 1.97 3.71
Y 1.74 3.83 1.87 3.53
Zr 1.65 3.66 1.77 3.36
Nb 1.57 3.50 1.69 3.21
Mo 1.52 3.36 1.63 3.07
Tc 1.45 3.24 1.55 2.94
Ru 1.39 3.09 1.49 2.82
Rh 1.33 2.94 1.43 2.71
Pd 1.29 2.85 1.39 2.61
Ag 1.24 2.73 1.33 2.52
Cd 1.20 2.62 1.28 2.43
In 1.05 2.22 1.12 2.12
Sn 0.93 1.99 0.99 1.87
Sb 0.82 1.77 0.89 1.68
Te 0.75 1.61 0.80 1.52
I 0.69 1.49 0.74 1.39
Xe 0.63 1.36 0.68 1.28

TABLE 4.16  Continued

that leads with the simple atomic radii scale under the form:

  (4.381)

However, despite of the simple above form, as well as of the correct 
atomic radii trend obtained (because the periodicity of the atomic param-
eters involved in Ghosh-Biswas formulation), the above equations is not 
full meaning for atomic radii determination. This because its originating 
equation is in fact an extremum equation for electronic density and not for 
the atomic radii. Then, only such condition is not enough to furnish the 
correct derivation of atomic radii.



322 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

Suppose that the considered optimum condition it gives one minimum 
density, it is not unique in atoms because the nodes presence; instead, if 
the density that follows from extreme condition is a maximum, is hard 
to accept that the most electronic population are concentrated far from 
nucleus (because the quantum occupation). Thus, the Ghosh-Biswas 
extreme equation does not contain the full information about the atomic 
radii.

This is clearly out for the transitional metals where the choice of prin-
cipal quantum number (between s- or d-orbitals) should be accompanied 
by atomic radii related information. This should be electronegativity, as 
a unique value (because the equalization of orbital electronegativities in 
atoms), to be involved as the missing information.

With the help of the Table 4.3, the atomic Ghosh-Biswas radii scale is 
displayed in the column <8> in Table 4.16 and reproduces the early results 
(Ghosh & Biswas, 2002).

To arrive at the electronegativity is simply to consider the competition 
between Ghosh-Biswas condition and the supplemented one:

  (4.382)

at the atomic radii frontier. In the case that we perform the ratio between 
the two above conditions to get a more comprehensible atomic radii deter-
mination, as a parameter at which both gradient of density as well as the 
density itself vanish (immediately near, for increasing sense, of the atomic 
radii).

The indeterminate ratio,

  (4.383)

is solved by the electronegativity, under the electronegativity Ghanthy-
Ghosh scale, that for STO representation gives the Ghanthy-Ghosh-STO 
atomic radii scale, with the values given in column <5> in Table 4.16 
(Putz, 2012c).

Is now clear that the Ghosh-Biswas corrected atomic radii scale has the 
electronegativity as an additional ingredient, with the effect in completing 
the atomic information at the level of the outermost atomic shell.



Periodicity by Peripheral Electrons and Density in Chemical Atom 323

Having completed the group of the actual STO computed atomic radii 
with the results derived from Boyd-Markus, Ghanthy-Ghosh, S-DFT, and 
Ghosh-Biswas equations, the comparative plot is draw in the upper part of 
Figure 4.30.

To have a symmetric approach with the previous ISO analyze, we proceed 
also here with the linear regressions of STO atomic radii in terms of electronic 
atomic charge. We get the following relations (Putz et al., 2003, 2012b,c):

  (4.384)

  (4.385)

  (4.386)

  (4.387)

which are represented together in the lower part of Figure 4.30. It is clear 
also from the linear representation that equations Ghanty-Ghosh, with 
numerical values in column <5>, and Ghosh-Biswas with column <8> 
as particularization, belongs to the same class of atomic radii scales, hav-
ing close range and orientations, in the top of the linear representations. 
Instead, the Boyd-Markus and the S-DFT (4.354) atomic radii STO scales, 
produce numerical values, columns <3> and <7>, that permit to classify 
them together in bottom of the linear representations, but separately from 
Ghanty-Ghosh-Biswas linear fits, as well in range as in orientation.

However, is good to mention here that from all working electronega-
tivity and atomic radii scales presented only the one based on DFT first 
principles, namely S-DFT (4.354) formulation and its corresponding STO 
version follows a coherent and less approximate picture. It comprises the 
biggest amount of information in terms of potential, electronegativity, and 
number of electrons, electronic density and its gradient.

In an approach that correlates atomic radius with electronegativity is 
of fundamental importance to know the electronic density distribution of a 
given system and in this respect a suitable treatment is based on the Slater 
orbital electronic picture.
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FIGURE 4.30  The plots as local representation (upper draws) and linear regressions 
like global representation (lower draws) for the atomic radii scales abstracted from 
Slater electronic density picture, both in related and non-related electronegativity 
methods, as indicated in the brackets < > referred to the Table 4.16; after Putz et al. 
(2003, 2012b,c).
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4.9 SCALES AND PERIODICITY BY ATOMIC SIZE RELATED 
DESCRIPTORS

An electronic system in presence of an external field (nuclear, magnetic, and 
electric) presents different responses according with the nature of the action.

Correspondingly, the specific sensitivity parameters can be introduced: 
diamagnetic susceptibility as the response under applied magnetic field, 
static dipole polarizability that accounts for the electronic cloud deforma-
tion under applied electric perturbation and the chemical hardness associ-
ated with the compactness of the electronic cloud by the nuclear influence, 
and possible applied electric perturbation.

Therefore, these are the descriptors that are sensitive to the external 
applied fields so that can give through the suitable experiments the use-
ful structure information. In the follow we quantify these structure indi-
ces in terms of atomic radii performing the correspondence between 
the full atomic quantities (total number of electrons, nuclear charge and 
the spatial averages) and those related with atomic radii (the outer elec-
trons, the effective charge of the outer shell and the atomic radii itself) 
(Putz et al., 2003, 2012b,c):

  (4.388)

4.9.1 DIAMAGNETIC SUSCEPTIBILITY

When a magnetic field is applied to the atomic system the electronic cloud 
responds creating an opposite magnetic moment in order to decrease the 
external perturbation. This behavior is called the diamagnetic effect and can 
be detected via the observed (measured) diminishment of the applied mag-
netic field (Selwood, 1956). The diamagnetic effect was introduced at the 
turn of twentieth century by Langevin as a change in the magnetic moment 
of a material caused by the deceleration of the orbiting electrons on the basis 
of the electric field induced by an applied external magnetic field. Here we 
expose the quantitative formulation of this effect (Putz et al., 2003, 2012b,c).

Let’s consider an electron with elementary charge e and mass m orbit-
ing with the velocity v at the distance r of nucleus. Its movement produces 
a microscopic electrical current:
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  (4.389)

Being the orbital area A = π r2 that associates with the orbital current, the 
corresponding magnetic moment can be written as their product:

  (4.390)

When an external magnetic field (μ0 H, with μ0 the permeability of vac-
uum) is applied it produced a flux through the orbital area (φ µ= 0 ) HA  that 
induces a potential according with the Faraday’s law:

  (4.391)

The induced electric field can be determined as the ratio of induced poten-
tial per orbit length:

  (4.392)

Furthermore, the induced electric field will act as the force (eE) to gives 
raise the orbiting deceleration:

  (4.393)

This equation can be integrated in the interval in which the magnetic field 
strength increases from 0 to H, with the resulting change in electron velocity:

  (4.394)

Next, the change in velocity produces the diamagnetic change of the mag-
netic moment to be:

  (4.395)

However, the obtained expression assumes so far that the applied mag-
netic field is perpendicular to the orbit plane. In reality the orbit plane 
varies constantly so that the spatial average has to be taken into account:
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  (4.396)

being R the spherical orbital radii.
Considering the average quantities it follows that the average diamag-

netic change in magnetic moment for an electron in a single atom has the 
expression:

  (4.397)

For an atom containing N electrons and for a material containing z atoms per 
unit volume the magnetization due to diamagnetic effect is then given by:

  (4.398)

from where the diamagnetic susceptibility (χdia) follows to be:

  (4.399)

There is clearly that diamagnetic susceptibility is negative, the produced 
magnetization is such that is against of the applied magnetic field. In gen-
eral the magnitude of χdia  is 10–28 cm3 per mole.

The practical link of the diamagnetic susceptibility with atomic radii 
can be reached performing the stipulated correspondence: when from 
the total number of electrons, N, only the outer (valence) electrons in the 
atomic systems are considered, Nouter, while the average  becomes 
the absolute atomic radii itself, R2. Therefore, the actual atomic work-
ing diamagnetic susceptibility formula in terms of atomic radii becomes 
(Putz et al., 2003, 2012b,c):

  (4.400)

4.9.2 ATOMIC POLARIZABILITY

4.9.2.1 The Functional Formulation of Polarizability

The electric dipole polarizability, α, describes the linear response of the 
electron cloud of a chemical system to an external electric field that is less 
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than that one needed to ionize the system. Therefore, the polarizability 
states as the linear coefficient between the induced dipole moment d and 
the applied electric field E:

  (4.401)

The interaction energy between the induced dipole and the applied field is 
given by the term:

  (4.402)

In general, the electric field E is an oscillating ones, but when is con-
stant it correlates with the induced dipole through the static polarizability. 
Moreover, for atomic systems, assuming the spherical coordinates with 
the radius r, a given direction of the field E will produces the perturbation 
potential along the azimuth direction:

  (4.403)

being θ the azimuth angle. For an N-electronic system with density ρ(r) 
and the nuclear potential V(r), in terms of perturbative potential and the 
linear response function (4.197) (Hohenberg & Kohn, 1964), the interac-
tion energy assumes also the form:

  (4.404)

By comparison between relations of ε it follows the atomic static dipole 
polarizability to be (Garza & Robles, 1993):

  (4.405)

Any evaluation of the polarizability demands the knowledge of the 
linear response function. The general expression for this function in DFT 
can be formulated as in Eq. (4.197) with in terms of softness kernel, the 
local and the global softness, respectively, all related with the introduced 
local response function L(r). However, for atomic systems a very sensi-
tive approximation consists in neglecting all non-local contributions in the 
linear response function (Putz et al., 2003, 2012b,c):
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  (4.406)

For the central nuclear potential V(r) = – Z/r, the static dipole polarizabil-
ity becomes successively:

  (4.407)

Furthermore, using the partial derivation decomposition:

  (4.408)

when q = 6, and the fact that the density ρ(r) assumes the exponential 
decaying form, the atomic static dipole polarizability can be simplified to 
yield (Putz et al., 2003, 2012b,c):

  (4.409)

That’s clear that the polarizability direct correlates with the atomic 
volume, assuming so the usual dimension, cm3. As in the diamagnetic 
case, the transcription of above relation in the atomic radii language 
assumes the correspondences that identify the average  with the 
cube atomic radii, R3, and the nuclear charge Z with the effective one Zeff 
(Putz et al., 2003, 2012b,c):

  (4.410)

From the dependence of atomic polarizability by the cubic atomic radii 
rises immediately the correspondence with the atomic volume also. 
Therefore, atomic polarizability states as a fully atomic related property 
and have to closely follow the periodicity of atomic volumes, the Lothar 
Meyer’s periodic curve.
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4.9.2.2 The Quantum Formulation of Polarizability by Bethe Rules

Starting from the consecrated second order perturbation energy (see 
Volume I/Section 3.7 of the present five-volume set)

  (4.411)

is specialized for the Stark potential produced by the applied external elec-
tric field with the amplitude ε in the 0x direction

  (4.412)

under the form

  (4.413)

that allows for α–polarizability in Eq. (4.413) the general hydrogenic 
(Z-dependent) formulation

  (4.414a)

where

  (4.414b)

is the reduced squared elementary charge.
Now, going to evaluate the atomic polarizability in terms of the quan-

tum basic information contained within the atomic quantum numbers 
(e.g., n, k), one starts recognizing the general operatorial identity over the 
complete set of quantum (eigen) states (Putz, 2010c).

  (4.415)
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Equation (4.415) is eventually known as the sum rule of Bethe and Jackiw 
(Bethe & Jackiw, 1968; Jackiw, 1967), while its simplest dipole matrix 
element sum rule casts as

  (4.416)

On the other hand, recalling the basic quantum commutation rule of 
momentum with space coordinate

  (4.417)

along the companion energy-coordinate commutator

  (4.418)

there can be inferred the quantum relationship

  (4.419)

upon inserting of the above quantum closure relation over the complete set 
of eigen-states. The first term in the right-hand side of the last expression 
may be reformulated as

(4.420)

and along the similar relation that springs out from the second term in 
Eq. (4.419) one gets the equation (Putz, 2010c)

  (4.421)

that can be rearranged under the so-called Thomas-Reiche-Kuhn (TRK) 
energy-weighted sum rule (Thomas, 1925; Reiche, 1925; Kuhn, 1925)

  (4.422)
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Remarkably, the expansion (4.422) may be also obtained by requiring that 
the Kramers-Heisenberg dispersion relation reduce to the Thomas scat-
tering formula at high energies; indeed, through re-writing Eq. (4.422) in 
the form

  (4.423)

it provides an important theoretical support for the experimental checks 
of the oscillator strengths ( fn,k) as a confirmation of early quantum results 
(Mehra & Rechenberg, 1982; Bethe, 1997).

Now, returning to the evaluation of polarizability given by (4.414) 
one can use the recipe (4.422) to facilitate the skipping out of the energy-
singularity towards the all-eigen-state summation (4.416) with the succes-
sive results (Putz, 2010c)

(4.424)

where we recognized the first Bohr radius expression (2.119).
Finally, the obtained expression (4.424) is unfolded through replacing 

the coordinate observation with the atomic radius quantum average dis-
placement respecting its instantaneous value (Putz, 2010c)

  (4.425)

It allows the immediate formation of the squared coordinate expression

  (4.426)

of which the observed quantum average looks like

  (4.427)



Periodicity by Peripheral Electrons and Density in Chemical Atom 333

The replacement of Eq. (4.427) in the polarizability (4.424) produces its 
radial averages’ dependency

  (4.428)

Knowing the first and second order quantum averages for the atomic 
radius of a Hydrogenic system written in terms of the principal and azi-
muth quantum numbers n and l, respectively (Morse & Feshbach, 1953)

  (4.429)

  (4.430)

the static atomic polarizability (4.428) takes the analytical form (Putz, 2010c)

  (4.431)

recovering the exact result for the Hydrogen limiting case

  (4.432)

Worth noting that the present derivation relays on the second order pertur-
bation energy (4.411) while the final expression (4.431) is assumed to be 
exact through the Hydrogen checking case (4.432), although different by the 
other reported also as valid formulations, see McDowell (1976); Delone & 
Krainov (1994); Krylovetsky (1997). Nevertheless, the present atomic 
polarizability, either under expressions (4.424) or (4.431) is to be further 
tested for reliability in modeling of atomic (or ionic) and molecular systems.

4.9.3 THE FUNCTIONAL ATOMIC CHEMICAL HARDNESS

Among the various ways of chemical hardness (η) formulations, here will 
be considered that one that connects the global hardness of an electronic 
system to its global softness (S) by the inverse relation (4.196):

  (4.433)
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Since the chemical hardness describes the electronic cloud’s inertia to 
deform under the nuclear (or applied weak electrical field) the global soft-
ness accounts for such deformations. The global softness is then expressed 
for atomic systems through assuming the forms (Putz et al., 2003, 2012b,c):

  (4.434)

The last expression was obtained making use of the above rule of decom-
position adapted for the present situation (q=4). Therefore, the global soft-
ness provides the global hardness with expression:

  (4.435)

However, to be situated in the same type of approximation as for the atomic 
polarizability was made, the non-local contribution to the global softness, 
the N2 term, has to be neglected. In practice this approximation is extended 
to neglect the term ZN2 instead of N2 only. This way, the approximation 
was performed in the hardness formula not in the softness one. This exten-
sion will be useful in applying this kind of approximation to another model 
for chemical hardness derivation. Finally, the hardness derived from soft-
ness displays the simple formula:

  (4.436)

The usually units for hardness are the electron-Volts.
Next, performing the same type of correspondences that was consid-

ered for the diamagnetic and polarizability formulas, the atomic hardness 
can be rewritten in terms of atomic radii and yields:

  (4.437)

and the previous approximation is turning now in neglecting the term 
. Nevertheless the relation for chemical hardness displays the 

same format as the previous formulations do (Ghosh & Biswas, 2002).
Now can be determined also the relation between global hardness and 

atomic polarizability. Eliminating the atomic radii from polarizability we 
arrive at the relation (in atomic units) (Putz et al., 2003, 2012b,c):
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  (4.438)

From this equation clearly appears the inverse correspondence between 
the chemical hardness and polarizability and also the fact that this relation 
does not reflect the direct inversion of these quantities as the hardness and 
softness s behaves, for instance.

Another way of quantifying the chemical hardness in DFT is to use its 
relation with electronegativity of Eq. (3.3). Noting the fact that the pres-
ent formula for electronegativity contains all the non-local terms in the 
linear response function, it appears that the present DFT electronegativ-
ity formulation can provide an important improvement in chemical hard-
ness analytic expression. Performing the partial derivation in both sides 
of chemical density-functional electronegativity respecting with the total 
number of electrons, the chemical hardness takes the form (4.278) where, 
for atomic systems we have that (Putz et al., 2003, 2012b,c):

  (4.439)

  (4.440)

while adapted for atomic radii when the effective one replaces nuclear 
charge. Since last relations are plugged into the chemical hardness (4.278) 
also the total number of electrons have to be reduced to the Nouter, as it was 
always considerate when the passage from spatial averages to the atomic 
radii was made. With all these considerations the working chemical hardness 
formulation in terms of atomic radii becomes (Putz et al., 2003, 2012b,c):

  (4.441)

This chemical hardness formula involves definitively more complex 
combination of atomic information than its softness-related counterpart. 
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Nevertheless, in order to can proper compare these hardness formula-
tions the same kind of approximation has to be considered. In arriving to 
obtained result the term  was neglected. These means that also the 
terms , which falls in the same class, have to be neglected. With 
these considerations, the actual chemical hardness assumes the actual 
form (Putz et al., 2003, 2012b,c):

  (4.442)

We have to remark that in the chemical hardness based on electronegativ-
ity, not all the non-local contributions was canceled but only that ones 
based on global softness. We claim that the actual chemical hardness 
reveals a more complex relation among the structural atomic information.

Nevertheless, eliminating atomic radii from polarizability it follows 
also that the expression of the present chemical hardness in terms of 
atomic polarizability yielding (Putz et al., 2003, 2012b,c):

  (4.443)

It is obvious that even the inverse relations between chemical hardness and 
atomic polarizability was mainly preserved, it displays now richer analytical 
structural information than that one directed derived from global softness.

4.9.4 DISCUSSION OF ATOMIC RADII BASED PERIODICITIES

The above discussed response indices of an atomic electronic system to 
the environment influence can be directly particularized once an atomic 
radii scale is available. However, here we will focus on the present S-DFT 
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(4.354) deduced atomic radii, R(Putz)-DFT. Using these radii values (see the 
second column in the Table 4.17) the diamagnetic susceptibility and the 
static dipole polarizability are evaluated while their behaviors once change 

TABLE 4.17  For the First Four Periods Of Elements, Using the DFT Atomic Radii 
(Second Column), There Are Displayed the Calculated Diamagnetic Susceptibility, Static 
Dipole Polarizability, the Softness and Electronegativity Related Chemical Hardness 
and the Experimental First Ionization Potentials, From the Left to the Right Columns, 
Respectively (Putz et al., 2003, 2012b,c)

Element R(Putz)-DFT [Å] –χ dia (0.56×10–28 

cm3/mol)
α (10–24 

cm3)
ηs [eV] ηχ [eV] I1 (Expt.) 

[eV]
Li 1.24 1.54 2.93 1.89 1.28 5.4
Be 0.82 1.34 0.57 4.28 3.23 9.4
B 0.62 1.15 0.18 7.54 6.44 8.29
C 0.49 0.96 0.07 11.93 9.62 11.27
N 0.41 0.84 0.03 17.11 12.88 14.5
O 0.35 0.735 0.02 23.38 16.4 13.61
F 0.31 0.673 0.01 30.17 19.85 17.42
Ne 0.27 0.58 0.007 38.97 23.88 (4.257)
Na 1.36 1.85 2.29 2.91 1.48 5.15
Mg 1.05 2.2 0.81 4.88 3.52 7.65
Al 0.85 2.17 0.35 7.41 6.35 5.89
Si 0.72 2.07 0.18 10.37 8.58 8.14
P 0.62 1.92 0.1 13.92 10.93 10.5
S 0.55 1.815 0.06 17.82 13.31 10.36
Cl 0.49 1.68 0.04 22.39 15.88 12.98
Ar 0.44 1.54 0.02 27.59 18.58 15.8
K 2.03 4.12 7.6 1.95 1.3 4.34
Ca 1.56 4.87 2.66 3.29 2.67 6.2
Sc 1.48 4.38 2.16 3.65 2.88 6.54
Ti 1.40 3.92 1.74 4.05 3.11 6.82
V 1.35 3.645 1.49 4.4 3.29 6.7
Cr 1.29 3.33 1.24 4.81 3.49 6.78
Mn 1.23 3.03 1.03 5.26 3.7 7.44
Fe 1.19 2.83 0.9 5.67 3.87 7.87
Co 1.14 2.6 0.76 6.15 4.07 7.9
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Element R(Putz)-DFT [Å] –χ dia (0.56×10–28 

cm3/mol)
α (10–24 

cm3)
ηs [eV] ηχ [eV] I1 (Expt.) 

[eV]
Ni 1.10 2.42 0.66 6.62 4.25 7.65
Cu 1.05 2.2 0.55 7.19 4.46 7.73
Zn 1.02 2.08 0.49 7.67 4.62 9.39
Ga 0.89 2.38 0.28 10.1 8.15 6.1
Ge 0.78 2.43 0.17 13.03 10.32 8
As 0.70 2.45 0.11 16.19 12.33 9.8
Se 0.64 2.46 0.07 19.53 14.29 9.76
Br 0.58 2.35 0.05 23.57 16.51 11.81
Kr 0.54 2.33 0.04 27.48 18.53 14
Rb 2.54 6.45 14.9 1.56 1.14 4.19
Sr 1.97 7.76 5.36 2.6 2.23 5.7
Y 1.87 6.99 4.36 2.89 2.42 6.38
Zr 1.77 6.27 3.52 3.2 2.62 6.85
Nb 1.69 5.71 2.92 3.51 2.81 7
Mo 1.63 5.31 2.51 3.81 2.97 7
Tc 1.55 4.8 2.07 4.18 3.17 7.28
Ru 1.49 4.44 1.76 4.53 3.35 7.5
Rh 1.43 4.09 1.5 4.91 3.53 7.46
Pd 1.39 3.86 1.33 5.24 3.69 8.34
Ag 1.33 3.54 1.12 5.68 3.88 7.58
Cd 1.28 3.28 0.96 6.11 4.06 8.99
In 1.12 3.76 0.56 8.03 6.78 5.9
Sn 0.99 3.92 0.34 10.26 8.51 7.35
Sb 0.89 3.96 0.22 12.73 10.17 8.65
Te 0.80 3.84 0.15 15.62 11.99 9.01
I 0.74 3.83 0.11 18.47 13.68 10.45
Xe 0.68 3.7 0.08 21.82 15.57 12.13

TABLE 4.17  Continued

from one atom to another in the periodic table are indicated in upper of 
Figure 4.31. As the experimental periodic reference it was chosen the first 
ionization potential. This quantity has the phenomenological advantage 
that direct accounts for the outer shell electronic structures, thus being 
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a suitable indicator for the periodicity of the atomic response to the exter-
nal influences in terms of outer shell properties as diamagnetic and polar-
izability state (Putz et al., 2003, 2012b,c).

The values in the Table 4.17 are relatively to the used formulas in terms 
of the atomic radii scale that is considered. There are also relatively to the 
assumed approach to replace all average dependencies with the atomic 
radii dependencies so that all the inner structure properties for an atomic 
system was concentrated its outer shell properties. This is naturally justi-
fied is looking to the global atomic response to the external influences 
where the outermost electrons are the mainly involved.

FIGURE 4.31  The comparative trend of the atomic diamagnetic susceptibility (upper left 
representation), static dipole polarizability (upper right representation) respecting to the atomic 
radii (middle left representation) and the experimental first ionization potential (middle right 
representation) along the softness and electronegativity related chemical hardness (in lower 
left and right) elemental periodical trend, respectively (Putz et al., 2003, 2012b,c).
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However, this theoretical picture is absolute, in sense that depends 
on the atomic radii that in its turn was deduced on the basis only about 
the DFT first principles and the considerate active electronic shell. As a 
general remark, all the computed quantities are sensitive to the periodic 
behavior. In the Figure 4.31 the comparative trend for the first four peri-
ods was displayed among the (absolute) diamagnetic susceptibility, atomic 
radii and the first ionization potential (Putz et al., 2003, 2012b,c).

Atomic radii states as the theoretical reference while the first ionization 
as the experimental ones. The diamagnetic global shape follows the atomic 
radii correspondence and is in good agreement to the first ionization value.

As the atomic radii decrease in periods the diamagnetic response dimin-
ishes as well due to the increase in compactness (decrease in orbiting area) 
of the electronic system requiring a higher first ionization potential. Among 
the groups is remarked the constantly increase in atomic radii, diamagnetic 
susceptibility with the consequence in the reduction of the first ionization 
potential. The analysis of atomic polarizability is enlightened by the maxi-
mum hardness principle and minimum polarizability principle (Putz, 2008a), 
respectively. There follows the chemical intuition that as an atom presents 
a closer-shell structure as the more stable, harder and much polarizable is.

The values in Table 4.17 and the shapes represented in Figure 4.31 turns 
out that the polarizability decrease along the periods, while the hardness has 
to increase along the periods. Such trend can sustain once more (here, at 
atomic level) the maximum hardness and minimum polarizability principles.

However, for elements that belong to the same group but different peri-
ods these principles are not relevant because it’s difficult to apply these prin-
ciples to systems with almost the same degree of occupancy in the outer shell. 
Moreover, the general trend of polarizability is to increase and of hardness is 
to decrease as the number of shells is increasing due to the screening effects.

However, a closer look to the values of Table 4.17 and Figure 4.31 
indicates that previous pointed out periodic trend for polarizability and 
hardness is better reflected when the periods are analyzed two by two: the 
first two only with the principal groups and the last two containing the 
transitional elements. There follows that the presence of the transitional 
groups, especially in the third period, shifts the values to the lower polar-
izability and (more evident) to the higher hardness values of the principal 
elements of the third period respecting with that ones belonging to the 
second period (Putz et al., 2003, 2012b,c).
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This behavior is attenuated in the fourth period, both respecting to the 
third and previous periods, on the basis of the accentuated global effects as 
the increasing in screening and in atomic radii. A closer look to the values 
of Table 4.17 and Figure 4.31 indicates that previous pointed out periodic 
trend for polarizability and hardness is better reflected when the periods 
are analyzed two by two: the first two only with the principal groups and 
the last two containing the transitional elements. It follows that the pres-
ence of the transitional groups, especially in the third period, shifts the 
values to the lower polarizability and (more evident) to the higher hard-
ness values of the principal elements of the third period respecting with 
that ones belonging to the second period. This behavior is attenuated in 
the fourth period, both respecting to the third and previous periods, on the 
basis of the accentuated global effects as the increasing in screening and 
in atomic radii (Putz et al., 2003, 2012b,c).

4.10 QUANTITATIVE PROPERTY-PERIODICITY CORRELATIONS

There raises the idea that the atomic number has to be related, in principle, 
with all physical and chemical properties an atomic structure carries, or 
in a more phenomenological order, it appears as an effect or as a conse-
quence of a certain existential elemental property. From this remark until 
the endeavor of viewing “Z” as the “atomic activity/property” that may be 
cast in terms of a plethora of structural indices is just a step and this is to 
be unveil in this communication, while testing one particular quantitative 
structure-property relationship (QSPR) for certain element leads, in fact, 
with testing the elemental periodicity of the Periodic System along a given 
period (Putz et al., 2011).

The streamline of QSPR analysis resides in evaluating the coefficients 
of the expansion

  (4.444)

between the dependent variable (Y) and the independent coordinates (X), 
either by traditional statistical models (Manly, 1986) or by recent advanced 
S-SAR algebraically ones, see Volume V of the present five-volumes set. 
Still, when about atomic QSPR one has to note that the above relation 
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has to be restrained, at least in the first instance, to the level of periods, 
since the general multi-linear relations are not able to model the relatively 
complicated inter-periods (or down groups) behavior along the Periodic 
System. As such the present approach will restrict only to the mono-vari-
ate case

  (4.445)

that is applied to the second, third and fourth periods for which a series 
of physicochemical properties, i.e., the atomic mass, atomic radius (R), 
melting point (MP), boiling point (BP), density (ρ) (Horovitz et al., 
2000), finite difference electronegativity (χ-FD) and chemical hardness 
(η-FD), experimental ionization potential (EXP-IP) and electronic affinity 
(EXP-EA) (Putz, 2008a), and their DFT third order (DFT[3]) counterpart 
(Putz, 2006), see Table 4.18.

The results are presented in Tables 4.19–4.21, where the obtained 
QSPR equations are supplemented with the associate correlation factors 
(r) and tested for the remaining element of each considered period: Ne 
(Z=10), Ar (Z=18), Sc (Z=21) for the second, third and transitional met-
als from the forth period, respectively. Individually, the predicted Z in 
Tables 2.19–4.21 reveals the important feature of the atomic structure that 
the electronegativity and chemical hardness related indices are the most 
appropriate for modeling the periodicity, beside the expected Z=Z(A) rela-
tionship, when combined both the closest computational result respecting 
the observed one with the highest correlation factors (Putz et al., 2011).

Conversely, there was shown that the so-called “macroscopic” physi-
cochemical structural features such as melting or boiling point or density 
are not the best indicators for rational ordering of the elemental periodic-
ity; this perhaps in all these cases all atomic electrons and levels are per-
turbed or regarded as equivalent when averaging for density, in contrast 
with the electronic frontier behavior quantified by electronegativity and 
related reactivity indices.

The fundamental issue of elemental periodicity is here addresses 
through quantitative-structure-property-relationship (QSPR) by assuming 
the atomic number as the atomic activity/property to be correlated with 
structural indicators, among which those relating with outermost orbitals, 
electronegativity, chemical hardness, ionization potential and electronic 
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TABLE 4.18  Synopsis for the Structural Parameters Employed in this Work for the Second, Third and Fourth Period Transitional Metals: 
Atomic Number (Z), Atomic Mass (A), Atomic Radius (R), Melting Point (MP), Boiling Point (BP), Density (ρ) (Horovitz et al., 2000), 
Finite Difference Electronegativity (χ-FD) and Chemical Hardness (η-FD), Experimental Ionization Potential (EXP-IP) and Electronic 
Affinity (EXP-EA) (Putz, 2008a), and Their Density Functional Theory Third Order (DFT[3]) Counterpart (Putz, 2006)

Element Z A R 
(pm)

MP 
(K)

BP 
(K)

ρ (g/
cm3)

χ-FD 
[eV]

η-FD 
[eV]

EXP-
IP [eV]

EXP-
EA [eV]

χ-DFT 
[3] [eV]

η-DFT 
[3] [eV]

DFT [3]-
IP [eV]

DFT [3]-
EA [eV]

Li 3 6.941 156 454 1615 0.53 3.02 4.39 5.41 0.62 4.11 2.39 8 0.23
Be 4 9.012 113 1551 2745 1.848 3.43 5.93 9.36 –2.5 12 12.1 22.6 1.41
B 5 10.81 97 2573 4273 2.34 4.26 4.06 8.32 0.21 31.4 36.5 58.4 4.4
C 6 12.011 92 4100 5100 2.25 6.24 4.99 11.3 1.25 75.2 80.8 141 9.55
N 7 14.007 55 63 77.4 0.88 6.97 7.59 14.6 –0.6 158 133 300 14.8
O 8 15.999 60 54.8 90.2 1.15 7.59 6.14 13.6 1.46 290 161 564 14.8
F 9 18.998 71 59.5 85 1.51 10.4 7.07 17.5 3.33 460 119 916 3.58
Ne 10 20.179 65 24.5 27.1 1.20 10.71 10.92 21.63 –0.31 645 –2.5 1310 –20
Na 11 22.990 186 370.9 1156 0.971 2.80 2.89 5.02 0.52 6.30 5.10 12 0.56
Mg 12 24.305 160 922 1380 1.738 2.6 4.99 7.7 –2.4 13.5 14.4 25.4 1.70
Al 13 26.982 143 933 2792 2.702 3.22 2.81 6.03 0.42 28.4 32.6 53.0 3.91
Si 14 28.086 117 1683 3538 2.33 4.68 3.43 8.22 1.25 57.3 62.8 107 7.45
P 15 30.974 110 317 553 1.82 5.62 4.89 10.5 0.73 107 105 203 12.1
S 16 32.066 104 386 718 2.07 6.24 4.16 10.4 2.08 188 156 359 17.2
Cl 17 35.453 99 172.2 138.3 1.56 8.32 4.68 13 3.64 315 211 608 21.4
Ar 18 39.948 174 83.8 87.3 1.38 7.7 8.11 15.81 –0.42 486 247 951 21.6
Ti 22 47.88 145 1941 3560 4.54 3.64 3.22 6.86 0.42 10.2 9.34 19.5 1.06
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Element Z A R 
(pm)

MP 
(K)

BP 
(K)

ρ (g/
cm3)

χ-FD 
[eV]

η-FD 
[eV]

EXP-
IP [eV]

EXP-
EA [eV]

χ-DFT 
[3] [eV]

η-DFT 
[3] [eV]

DFT [3]-
IP [eV]

DFT [3]-
EA [eV]

V 23 50.942 131 2173 3723 5.8 3.85 2.91 6.76 0.94 11.5 11.2 21.8 1.29
Cr 24 51.996 125 2130 2938 7.19 3.74 3.12 6.76 0.62 12.9 13.4 24.3 1.57
Mn 25 54.938 137 1518 2334 7.43 3.85 3.64 7.90 0.31 14.5 15.8 27.0 1.88
Fe 26 55.847 125 1808 3135 7.87 4.26 3.64 7.90 0.62 16.1 18.6 30.1 2.24
Co 27 58.933 125 1768 3200 8.90 4.37 3.43 7.90 0.94 17.9 21.7 33.1 2.64
Ni 28 58.693 124 1726 3186 8.90 4.37 3.22 7.7 1.14 19.8 25.2 36.5 3.0
Cu 29 63.546 128 1356.4 2840 8.92 4.47 3.22 7.8 1.25 22.1 29.6 40.6 3.66
Zn 30 65.39 133 693 1179 7.14 4.26 5.2 9.46 –0.9 24.4 34.0 44.6 4.24
Sc 21 44.956 161 1814 3103 2.99 3.43 3.22 6.55 0.21 9.11 7.70 17.3 0.85

TABLE 4.18  Continued
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TABLE 4.19  Testing the Second Period Periodicity by Predicting the Atomic Number 
Z for (Ne, Z=10) by Employing Various QSPR Equations with the Structural Factors of 
Table 4.18; the Best Predictions Are Further Limited by the First Three Best Correlations 
(r) (Putz et al., 2011)

Model QSPR r ZPREDICTED

Atomic mass Z=–0.5010+ 0.51843*A 0.99381 9.9603
Radius Z=11.013–0.0545*R 0.8856 7.470
Melting point Z=6.5696–0.005*MP 0.3279 6.447
Boiling point Z=7.0631–0.005*BP 0.5175 6.927
Density Z=5.9556+0.02961*ρ 0.00942 5.991
FD-Electronegativity Z=1.2029+0.80124*χFD 0.97426 9.7841
FD-Chemical hardness Z=-0.4942+1.131*ηFD 0.69613 11.863
EXP-Ionization potential Z=0.26558+0.50120*IPEXP 0.95574 11.106
EXP-Electron affinity Z=5.5853+0.77004*EAEXP 0.64740 5.346
DFT[3]-Electronegativity Z=4.2818+0.01167*χDFT[3] 0.92437 11.808
DFT[3]-Chemical hardness Z=3.5234+0.03183*ηDFT[3] 0.91961 3.443
DFT[3]-Ionization potential Z=4.3246+0.0058*IPDFT[3] 0.91848 11.922
DFT[3]-Electron affinity Z=4.5291+0.2111*EADFT[3] 0.59675 -0.307

TABLE 4.20  The Same Analysis as in Table 4.19, for the Third Period (Ar, Z=18) 
(Putz et al., 2011)

Model QSPR r ZPREDICTED

Atomic mass Z=0.08671+0.48489*A 0.99268 19.453
Radius Z=22.329–0.0634*R 0.9591 11.297
Melting point Z=14.918–0.0013*MP 0.3311 14.809
Boiling point Z=15.043–0.0007*BP 0.4098 14.981

Density Z=12.436+0.82985*ρ 0.21426 13.581
FD-Electronegativity Z=9.2614+0.99074*χFD 0.96357 16.890
FD-Chemical hardness Z=9.5955+1.1071*ηFD 0.47846 18.574
EXP-Ionization potential Z=7.6803+0.72676*IPEXP 0.93678 19.163
EXP-Electron affinity Z=13.183+0.91703*EAEXP 0.78112 12.797
DFT[3]-Electronegativity Z=12.208+0.01754*χDFT[3] 0.92076 20.732
DFT[3]-Chemical hardness Z=11.729+0.02710*ηDFT[3] 0.97058 18.422
DFT[3]-Ionization potential Z=12.231+0.00906*IPDFT[3] 0.91791 20.847
DFT[3]-Electron affinity Z=11.561+0.26543*EADFT[3] 0.98192 17.294
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affinity, being these more favorite respecting the so-called “measured” indi-
cators as the melting and boiling points are. The results reload the idea that 
indices measured through a perturbation of the atomic system are somehow 
inappropriate for being considered as proper, intimate, structural indicators. 
However, this study was mainly based on mono-linear regression while 
further extended analysis to many-linear and higher order variations has 
to be as well undertake to properly model the elemental periodicity within 
Z=Z(structure) paradigm through the quantum indices (Putz et al., 2011).

Therefore, the statistical quantitative structure-property relationship 
(QSPR) methodology may be undertaken towards checking the elemental 
periodicity on the 2nd, 3rd, and transitional 4th chemical periods through 
correlating the atomic order’s number Z with various physical-chemical 
properties, including various formulations for electronegativity and 
chemical hardness.

4.11 CONCLUSION

Aiming to hint at the solution to the current debate regarding the physi-
cal vs. chemical definition of an atom and as a special stage of a larger 

TABLE 4.21  The Same Analysis as in Table 4.18 and Table 4.19, for the Fourth Period 
(Sc, Z=21) (Putz et al., 2011)

Model QSPR r ZPREDICTED

Atomic mass Z=–0.4114+0.46777*A 0.98813 20.617
Radius Z=49.250–0.1784*R 0.4595 20.527
Melting point Z=34.166–0.0049*MP 0.8052 25.277
Boiling point Z=32.774–0.0023*BP 0.6488 25.637
Density Z=15.786+1.3784*ρ 0.75253 19.907
FD-Electronegativity Z=-5.320+7.6577*χFD 0.88379 20.945
FD-Chemical hardness Z=17.521+2.4148*ηFD 0.59648 25.296
EXP-Ionization potential Z=5.2487+2.7051*IPEXP 0.83326 22.967
EXP-Electron affinity Z=26.480–0.8091*EAEXP 0.1901 26.310
DFT[3]-Electronegativity Z=16.675+0.56175*χDFT[3] 0.99527 21.792
DFT[3]-Chemical hardness Z=19.633+0.32043*ηDFT[3] 0.98950 22.100
DFT[3]-Ionization potential Z=16.214+0.31739*IPDFT[3] 0.99539 21.704
DFT[3]-Electron affinity Z=20.020+2.4938*EADFT[3] 0.98725 22.139
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project regarding quantum chemical orthogonal spaces (Putz, 2012b), the 
present work addresses the challenging problem of defining and charac-
terizing valence states with respect to the ground state within conceptual 
density functional theory. We are aware of the earlier warnings (Parr 
& Bartolotti, 1982; Bergmann & Hinze, 1987) regarding the limits of 
DFT and of the total energy of atomic systems combined with a Slater-
based working density to provide a quadratic form in terms of system 
charge, as required by the general theory of chemical reactivity of atoms 
and molecules in terms of electronegativity and chemical hardness. 
Fortunately, we discovered that the Bohmian form of the total energy 
of such atomic systems provides, instead, the correct behavior, although 
it is only density-function-dependent and not a functional expression 
(Putz, 2012a) consistent with the recent advanced chemical orthogonal 
spaces approaches of chemical phenomenology (Putz, 2012b) as being at 
least complementary to the physical description of many-electronic sys-
tems when they are engaging in reactivity or equilibrium as the atoms-
in-molecules theory prescribes (Bader, 1990). With the present Bohmian 
approach, the total energy is in fact identified with the quantum potential, 
thus inherently possessing non-locality and appropriate reactivity fea-
tures, which are manifested even over long distances (Putz, 2010b; Putz 
& Ori, 2012); this also generalizes the previous (Boeyens, 2008) electro-
negativity formulation from the direct relationship between a quantum 
potential and its charge derivative. The double variational algorithm was 
implemented to discriminate the valence from the ground state charges, 
by using the golden ratio imbalance equation as provided by adaption 
of the Heisenberg type relationship to chemical reactivity for atoms. 
This corresponds to an analytical unfolding of the physical and chemical 
imbalance of the electronic charge stability of atomic systems, parallel-
ing the deviation from the equal electron-to-proton occupancy in physi-
cal systems toward electron deficiency in the valence states of chemical 
systems. As a consequence, the difference between valence and ground 
state charge systems is naturally revealed and allows for the explana-
tion of chemical reactivity and bonding in terms of fractional electron 
pairs, although driven by the golden ratio under the so-called physical-
to-chemical charge difference wave function and associated normaliza-
tions, all of which represent elaborated or integral forms of the basic 
imbalance atomic equation. The present results are based on 10th-order 
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polynomial fitted over 32 elements from the first 54 elements of the first 
four periods of Periodic Table of elements and can be further pursued 
by performing such systematic interpolations that preserve the golden 
ratio relationships, as advanced therein; they may also provide a com-
prehensive picture of how valence electrons may always be projected/
equalized/transposed into ground state electrons within the perspective 
of further modeling chemical reactions when chemical reactivity negoti-
ates the physical molecular stabilization of atoms in molecules.

In this context of quantum chemical atom, a unified Mulliken valence 
with Parr ground state for electronegativity-chemical hardness picture is 
presented. It provides an analytical useful tool on which also the absolute 
hardness as well IP and EA functionals are based. For all these chemical 
reactivity indices, within the density functional softness theory, systematic 
approximate density functionals are formulated and applied for atomic 
systems. For the absolute hardness, a special relationship with the new 
electronegativity ansatz and a particular atomic trend paralleling the abso-
lute EA are founded, that should complement and augment the fashioned 
finite-difference energetic (Mulliken based) approach (Putz, 2006). In the 
framework of the DFT one shows that the new electronegativity func-
tional formulation relates the Feynman-Kleinert path integral formalism 
in the Wigner/Markovian limit is proposed. The computation of the elec-
tronic density follows, in terms of partition function, the same procedure 
of the Levy’s constrained-search for the wave function (Putz et al., 2005, 
2009b). However, in all cases, the obtained electronegativity scale seems 
to respect the main criteria largely used for its acceptability for chemical 
atomic periodicity across the Periodic Table.

Next, in an effort to unify the chemical reactivity principles of electro-
negativity and chemical hardness, the electrophilicity index seems to offer 
the natural way through its definition, and it is accordingly introduced 
(Putz & Chattaraj, 2013). Nevertheless, due to its inverse dependence with 
the global chemical hardness it opens the door of being treated within the 
DFT of softness, where a lot of conceptual and analytical prescriptions 
are available. As such, the present chapter presents the route to introduce 
the local and kernel electrophilicities as based on long-range local and 
kernel softness, fulfilling the main hierarchical constraints, as successive 
integration rules, symmetry, and with conceptual and analytic consistency. 
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The obtained expressions are general, analytic and not being limited by 
the knowledge of the E(N) dependence and therefore not being affected 
by the discontinuity in energy-charge transfers (derivatives) as earlier 
formulations were shown. Instead, the present approach may be reduced 
exclusively to density and potential dependence of local and kernel elec-
trophilicities once a working ansatz for kernel softness is provided. In such 
context, either atomic or molecular implementation may be worked out 
and applied towards modeling chemical phenomena. As an illustration, a 
special form of softness kernel was employed and the associated atomic 
scales were derived while showcasing the periodicity reliability and hier-
archical connections among local, kernel and global forms of electrophi-
licity through periods and groups in the periodic table. Electronegativity 
trends especially for the alkali metal atoms and the halogen atoms are 
faithfully mimicked.

Finally, there is widely know that, although of intrinsic quantum 
mechanical nature, the atomic radii has not a special operator associate, 
nor a definitive working definition. Therefore, many physical-chemical 
approaches should be undertaken in providing reliable scales to parallel 
the periodic behavior of the Table of Elements. As such, the atomic scales 
as related with force, energy and potential are firstly reviewed in a histori-
cal context of modern physical chemistry, until the most celebrated con-
nection with electronegativity (Putz, 2012c). However, since the proof of 
the quantum mechanical observable character of electronegativity, see the 
Chapter 3 of the present volume, there appears that the atomic radii based 
electronegativity computation should be considered as the main quantum 
chemical realization of the atomic radius itself. For physical complete-
ness, also the atomic radii based physically observable quantum quantities 
like diamagnetic susceptibility and polarizability scales are considered in 
relation with atomic radii ones as computed by means of electronegativity 
information. Alongside, the intriguing problem of chemical hardness den-
sity functional computation in terms of atomic radii is approached due to 
the fact they are indices measuring the stability and extension of an atomic 
system, respectively. This way, the atomic radii concept and scales appear 
as the fundamental linking tools between the chemical quantum informa-
tion of a system (compiled by electronegativity) and the physical observ-
ables, assuring therefore the needed convergence of the quantum natural 
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hierarchy: chemical information → atomic radius (to be then generalized 
to bonding length) → physical observable (Putz, 2012c).

The present Chapter’s approach is therefore valuable both from 
conceptual and computational views: for the first since it showcases the 
non-reducibility of the chemical knowledge to the physical laws, while 
assuring instead the chemical–to-physical knowledge transfer in model-
ing the observed world; and for the second instance since it constitutes 
through the connection with electronegativity—at its turn in relation with 
the so-called chemical action functional the veritable nano-roots of the 
chemical larger ensemble properties: the atomic radii information com-
bined to provide the effective bonding length in molecules enters in char-
acterization of the recently advanced bondons’ existence—the quantum 
particle of chemical bond (Putz, 2010b), see also the Volume III of the 
present five-volume set; or describing the electronic delocalization length 
in molecules and complex nanostructures through the recent geometri-
cal kernel realization of the chemical action functional (Putz, 2009a). It 
may be finally related with aromaticity or chemical reactivity through the 
further connection of atomic radii and/or bonding length with chemical 
hardness (Putz, 2010c), assuring therefore a comprehensive coverage of 
the fundamental chemical phenomena rooting in nano-scale information 
(Putz, 2012c).
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ABSTRACT

This chapter reviews and advances the two related quantum ways for 
quantum description of valence/interacting/exchanged electrons among 
atoms at their turn involved in binding or molecular systems:

• by abstract formalization within quantum algebra of open sys-
tems; and

• by analytical formulation within stochastic/dissipative systems.
This way one models the electronic distribution, exchange and local-

ization in chemical (inherently open) system, dealing therefore with that 
chemistry is at its ultimate description: the science of moving electrons 
from one state to another (either by intra- or inter-atomic framework).

5.1 INTRODUCTION

Algebraic characterization of many-electronic systems, and especially by 
formalization of chemical potential quantity, as the may mathematical-physi-
cal-chemical conceptual link and observable, offers the appropriate premises 
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in further considering the chemical potential (aka minus electronegativity as 
previously introduced, consistently within density functional theory (DFT)) 
as the triggering quantity for chemical reactivity and electronic exchange 
and correlations in isolated atoms as well as for atoms-in-molecules com-
binations. To this aim, the Thomas-Fermi (TF) theory is firstly exposed in a 
way continuing the previous quantum mathematical analysis which widely 
assures the matter stability at the atomic level by the uniform electronic den-
sity, acceptable for many-electronic systems in general and for valence states 
(in atomic chemical zones) in special. The next natural step is considering 
the inhomogeneities specific to electronic localization in atomic shells, which 
will be nevertheless later solved by stochastically treatment of many-elec-
tronic systems at non-equilibrium (see Section 5.4).

In the history of chemistry, the revolutionary concepts of quantum 
mechanics lead with both conceptual and innovative understanding and 
designing of molecular structures. In this review, we would like to survey the 
main references in this rich and fascinating field of bonding knowledge. In 
this respect, the intensive level of chemical bonding such as the Schrödinger 
many-electronic-poly nuclei problem is firstly approached under the con-
secrated Hartree-Fock (HF), Roothaan and Kohn-Sham Self-Consistent 
Field (SCF) quantum frames. The localization problem is considered as the 
next level, in which context both the orbital and density localization func-
tions are discussed. Finally, the chemical reactivity is indexed through the 
global density functionals of electronegativity and chemical hardness and 
of the associate principles. A study case of the particular series of acidic 
halogens in reactions with hydrogen peroxide is undertaken at each level of 
chemical bond characterization. It is found that the quantitative structure-
property (activity) multi-linear relationships – QSP(A)Rs – may be faithfully 
employed aiming to unify the levels of chemical bonding in single equation.

Very often, the famous words of Dirac, i.e., “The underlying physical 
laws necessary for the mathematical theory of a large part of physics and 
the whole of chemistry are thus completely known,” are quoted by theorists 
in physics when they like to underline that chemistry is in principle solved 
by the basics of quantum mechanics so that some more interesting prob-
lems should be solved. Despite this, from 1929 nowadays, quantum physics 
of atoms and molecules largely turns into quantum chemistry, an interdis-
ciplinary discipline that still struggles with the elucidation of the actual 
behavior of electrons in nano- and bio-systems. While the total success is 
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still not in sight, the achievements in the arsenal of concepts, principles, 
and implementation was considerable and already enters goes into the arse-
nal of humankind hall-of-fame giving thus hope for a shining dawn in the 
poly electronic interaction arena (Putz & Chiriac, 2008). However, when 
questing for the underlying principles of the chemical bond, the first com-
pulsory level of expertise may be called as the intensive level of analysis 
in which the main ingredients of a many-electronic-many-nuclear problem 
has to be clarified. These are subjected in the below following sections.

Despite the fact that HF or Kohn-SCF equations provide in principle 
the complete set of electronic orbitals that describe the multi-electronic-
poly center bonds, their main drawback is that of providing the delocal-
ized description over an entire molecular space. Such an analysis has to be 
accomplished with special techniques through which the localized orbitals 
and localized chemical bond are to be recovered (Putz & Chiriac, 2008; Putz, 
2009). Only this way can quantum mechanics provide a viable rationale, i.e., 
quantum chemistry, in chemical bond characterization. Nevertheless, such 
a rationale can be achieved in two ways: one of them involves the orbital 
transformation producing the localized set of orbitals and indices (Daudel et 
al., 1983); the other one, based on electronic density, includes the electronic 
density, to a certain degree, into an electronic localization (super) function – 
ELF so as to generate a local, analytical indication of the electronic pair of 
the chemical bond (Becke & Edgecombe, 1990; Schmidera & Becke, 2002; 
Berski et al., 2003; Kohout et al., 2004; Nesbet, 2002; Putz, 2005).

In what follows, we are going to outline the modeling the chemical elec-
tronic behavior in atomic structure by both of these major mathematical-
algebraically and stochastic-localization quantum approaches.

5.2 QUANTUM ALGEBRA OF ELECTRONIC SYSTEMS

5.2.1 INTRODUCING KUBO-MARTIN-SCHWINGER (KMS) 
STATES

Aiming to establish the fundaments of the chemical reactivity on quan-
tum mathematical-physical concepts, a new way can be approached, by 
considering the statistical quantum phenomenology of the multi-electronic 
processes. In this context, the relationship between the Heisenberg and 
Schrödinger dynamic formalisms is constituted to be the starting point. 
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For a multi-particles system, the canonical coordinates associated to the 

operators impulse pi

���  and position qi

�� , satisfy the canonical commutation 
relations (Davies, 1976).
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and the develop equation for any operator O in time is written such as:
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equation in which  represents the reduced Planck constant, and H denotes 
the Hamiltonian operator of the system, conventionally written as a func-
tional of the operators associated to the impulse and the position of each 
electron in the system:
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From the physical point of view, any vector from the Hilbert space 
(normalized) H = L2(RN), H L RN= ( )2  corresponds to a system state, while 
the scalar product y yOt  is the observable O value at the moment t. 
The Heisenberg formalism is an operatorial one and the solution of Eq. (5.2) 
is actually the time-evolution equation for the considered operator. The 
passage and the equivalent with the Schrödinger formalism of the wave 
functions is made by identifying:
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while the complementarity between the two dynamic algorithms corre-
sponds to the transposition law:

 ψ ψ ψ ψO Ot t t=  (5.7)

where O and y  correspond to the values Ot
  and y t at the moment t = 0.

In the ‘20s, ‘30s Stone and (von Neumann, 1929) have worked to clar-
ify the connections between the two formalisms, in a coherent mathemati-
cal description, showing that the quantum theory is essentially unique. For 
example, in 1930, Stone (von Neumann, 1961) showed that if t U t� �  is a 
continuous unitary representation along a real line, then there is a unique 
self-adjoint operator for H so that will be satisfied the equation:

 dU
dt

iU Ht
t



 =  (5.8)

on the Hamiltonian operator field values; reciprocally, if H is self-
adjunct, then the temporary equation determines a unique unitary repre-
sentation continuous on R.

Therefore, in the early ‘30s the quantum mechanics was based on the 
following basic rules:

1. An observable is a self-adjoint operator on the Hilbert space.
2. A physical state (pure) is a vector from H.
3. The estimated value of the operator O on the state y  is given by the 

scalar product y yO .
4. The dynamic evolution of the system is determined by the self-

adjoint properties of the Hamiltonian operator, and by Eq. (5.8) of 
the development operator

 U itHt
 = 



exp  (5.9)

and fulfills the operator and wave field rules:

 
O O U OU

U

t t t

t t

� � � � ��

� �
=

=







−

−ψ ψ ψ
 (5.10)
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by which the unity of transposition operation is respected.
5. The mixed state, w, are defined as functionals of the observables 

such as:

  (5.11a)

where

 λ λ ψi i i
i

≥ = =∑0 1 1, ,  (5.11b)

and p  represents the traces class operator, with the trace as unit.

The two dynamic approaches (Heisenberg and Schrödinger) can be 
unitary integrated to the Stone-von Neumann uniqueness theorem, which 
state that for the unitary groups,

 
U t i p t

V t iq t

i i

j j

� �

� �

( ) = 





( ) = 












exp

exp
 (5.12)

associated to the self-adjoint operators of impulse and position, which 
satisfy the Weyl form of the commutation relationships

 
U s U t U t U s V s V t V t V s

U s

i j j i i j j i

i

       



( ) ( ) − ( ) ( ) = = ( ) ( ) − ( ) ( )
(

0

)) ( ) = ( ) ( )  





 V t V t U s istj j i ij
   exp δ

 (5.13)

while noting that just the representations through the unitary continuous 
groups in the Hilbert space are written as sums of identical Schrödinger 
representations.

The algebra generated by the unitary groups satisfying the commuta-
tion relationships is called algebra C*. Therefore, appears useful and even 
necessary the quantum mechanics reformulation of algebraic perspective.

After 1933, Jordan suggested that the quantum observables can be 
characterized by their algebraic structure, introducing the Jordan algebras 
of operators, which satisfy the following composition axioms:



370 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

 

A B AB BA

A B C A B A C

B C A B A C

� � �
� � � �

� � � � � � � � � �

� � � � � � � � �

=
+

+( ) = +

+( ) = +

2

AA

A B A B A B

A B B A

A A B A A

�

� � � � � � � � �

� � � � � �

� � � � � � � �

λ λ λ( ) = ( ) = ( )
=
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 (5.14)

λ ∈ℜ. In the composition axioms set, the last relationship is a weaker form 
of the associative law, which satisfies the quantum operators.

Thus, there is defined by (Murray & von Neuman, 1936) the algebra 
W * in which the quantum observables are identified with the self-adjoint 
elements of the weak algebra of operators (in the Jordan sense) closed 
over the Hilbert-M space, while the states are described as mixed states. 
Based on these reasons, Gelfand and Naimark (1943) and Segal (1947) 
have argued that the observables uniform convergence has a direct 
physical interpretation, while the weak convergence has only an ana-
lytical meaning. Therefore, the quantum observables can be identified 
as elements of a uniformly closed Jordan algebra. For finite electrons 
systems, the Stone–von Neumann uniqueness theorem indicates the fact 
that the distinction between C* and W * algebras is a matter of technical 
convenience.

Theoretically, are introduced as an idealization of the finite physical 
systems, the infinite systems. Therefore, becomes natural the study of the 
infinite systems models of electrons and the role which the C* and W * 
algebras properly play.

If is first considered a finite system as a subset in the electrons space, 
Λ, then it can be constructed the C* algebra on the vectorial space of opera-
tors associated, UΛ. Therefore, the observables corresponding to an elec-
trons system however great can be determined by the algebra formed on 
the space consisting of the spaces UΛ reunion.

The algebra U , built without the specification (as sub-indices) of 
a state, or particular representations, corresponds to the C* algebra of 
observables for an infinite system. The algebras constructed in this way, 
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from UΛ sub-algebra families, are called quasi-local algebras and the alge-
bras UΛ are called local algebras.

Since Hagg (1962) had argued the importance of the quasi-local struc-
tures in the field theoretical models, they have been applied to the quantum 
statistical mechanics.

In this context, the algebraic structure is proving as an essential base of 
analysis the equilibrium states for the multi-electronic systems.

According to the arguments presented, for each operator O U∈ Λ and 
for each set of electrons Λ, is introduced the equilibrium state of the sys-
tem into the thermodynamic limit,

 ω ωα αO O ( ) = ( )
→∞

lim
' ',Λ Λ  (5.15)

where the infinite limit indicates the increase of the electrons set until the 
increase, which contains any compact subset of electrons for which the 
limit is reached.

The lower indices α denotes a thermodynamic parameter, for example, 
the temperature, the electron density or the chemical potential – and any 
relevant algorithm of constructing the equilibrium states depends on the 
parameter type selection.

The set of the thermodynamic limits for various observables associated 
to the electronic system represents the systemic equilibrium data, regard-
less of the size and the form of the considered electrons system.

Broadly, there are two ways of constructing the equilibrium state:

1. If it is started from the Hamiltonian specified for an electrons set H Λ, 
which contains incorporated the descriptions of the interactions and the 
conditions of equilibrium for the electrons in a finite region, the Gibbs 
equilibrium states of the system – in the parameterization of the thermody-
namic temperature inverse β =1/ T  – will be written as follows:

 ω
β

β
βΛ

Λ

Λ
,

( exp

(exp[ ])
O

O H

H


 



( ) =
−



( )

−

Tr

Tr
 (5.16)

From here starts the discussion of the existence or nonexistence of the 
thermodynamic limit applied to the equilibrium states. Unfortunately, this 
type of construction gives little information about the critical phenomena.
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2. The second way starts from the specification of the infinite system 
evolution attached to the studied system, for which the simplest and also 
the strongest assumption is that the temporal evolution t Ot� �τ ( ) of the 
observable O is given by a continuous uni-parameter group τ for the *auto-
morphisms U  of the algebra C*, for all the observable. Therefore, the sta-
tionary criterion in time for the equilibrium states will be,

 ω τ ωt O O O U t R  ( )( ) = ( ) ∀ ∈ ∈, &  (5.17)

In 1957, Kubo, and respectively Martin and Schwinger (K-M-S) in 1959, 
had formulated a condition equivalent with the stationary criterion for the 
Gibbs states of finite volume, using the equilibrium-states form – (i) and 
performing the thermodynamic limit,

 ω τ ω τβ β βt t iA B B A A B U t R     ( )( ) = ( )( ) ∀ ∈ ∈+ , , &  (5.18)

it is obtained the so-called KMS condition, which was proposed as an equilib-
rium criterion by Haag (1962) and Hugenholtz (1967). This condition implies 
that the function t B At� � �ω τ ( )( ) is analytic in the interval 0 < <Im t β and 
therefore expresses an approximate commutation of the observables w.

Then Tomita (1956) assigns to each normal state (mixed) w over M the 
W * algebra, an uni-parameter canonical group of the automorphisms τ ω. 
Moreover, Takesaki (1973) showed that the state w , satisfying the equi-
librium condition KMS in relation with the group τ ω , with the only differ-
ence of considering the evolutions t A A Mt� � �τ ω ( ) ∈, , not necessarily has 
a continuous norm.

Although the second formulation of the equilibrium states is more real-
istic, in the way of including the temporal evolutions, however in this case, 
the assumption of the existence of a continuous uni-parameter group of the 
*automorphisms of U  of the algebra C*, is hardly satisfied for the complex 
electronic systems. Therefore, the construction of the equilibrium states w, 
and also the temporal evolution τ must be simultaneously implemented.

The following situation “proper” for the temporal evolution compat-
ible with the system equilibrium states, would be the group of the weak 
closure automorphisms, πω U( )", of the space U  in the cyclic representa-
tion associated to the state w.
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However, Haag et al. (1970) made some suggestions concerning the 
equilibrium state and its physical equivalence, in order to obtain a better 
phenomenological interpretations. Thus, if the observables A An

 

1,...,  are 
measured in the equilibrium state w, are obtained the numbers

 ω λ ω λA An n
 

1 1( ) = ( ) =,...,  (5.19)

due to the inherent imprecision in the measurement process, the observed 
values being included in intervals as λ ε λ εi i− +( ), . Therefore, the state w 
is equivalent to the state w ' which satisfies:

 ω ω εA A i ni i
 ( ) − ( ) < =' , ,...,1  (5.20)

so that the physical equivalence of the equilibrium states is determined by 
the neighborhoods of the *weak topology of any *weak dense representa-
tions πω U( ).

The mixed states are a set of states large enough to can physically 
describe an electronic system, for various temperatures, densities.

Since the introduction of the electronegativity as chemical potential 
with changed sign is considered to be a fundamental observable for the 
characterization of the equilibrium states of the electronic systems in inter-
action, the chemical reactivity description in terms of quantum statistics 
and algebraic theory is considered to be a fundamental step in elucidating 
the tendencies of evolution to and from the equilibrium states, admitted by 
an electronic system (finite) and also of the afferent critical states.

5.2.2 BASIC ALGEBRAIC STRUCTURES AND 
TRANSFORMATIONS

In this section the following symbols for the affiliation to the concrete 
algebraic structures will be used; the present discussion follows (Bratteli 
& Robinson, 1987a,b):

• U, B, C … algebras C*;
• M, N, Z ... algebras W* (von Neumann);
• I ... ideals in algebras C* and W*;
• H … Hilbert space; A, B, C elements in algebras C* and W*;
• P, E, F … orthogonal projections; G group;
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• w,ϕ … quantum statistical states (connected)  π *morphism;
• ξ, η, y , Ω … vectors in Hilbert space; v measure;
• a, b … coefficients from the real complex space etc.

Let U be a vectorial space with complex coefficients. The space U will 
be called algebra if is endowed with a multiplicative law which associ-
ates for each two elements A,B∈U, the product AB satisfies the associativ-
ity and distributivity properties (Bratteli & Robinson, 1987a,b; Araki & 
Kishimoto, 1977; Araki et al., 1977; Mebkhout, 1979; Haag et al., 1970; 
Hepp, 1972; Maksimov, 1974; Takesaki, 1970; Doplicher et al., 1966, 
1969a-b; Connes, 1973):

 

1

2

3

( ) ( ) = ( )
( ) +( ) = +

( ) ( ) = ( )( ) ∈

A BC AB C

A B C AB AC

AB A Bαβ α β α β, C  (5.21)

A subspace B of U, which is also an algebra in relation to the operations 
from U, is called a subalgebra. If the algebra U is commutative or abelian, 
the AB product is commutative,

 AB BA=  (5.22)

The application A U A U∈ → ∈*  is called involution or self-adjoint opera-
tion of the U algebra, if satisfies the following properties:

 

1

2

3

( ) =

( )( ) =

( ) +( ) = +

A A

AB B A

A B aA B

**

* * *

* * *α β β  (5.23)

The algebra with the involution operation is called *algebra, and the sub-
set B from U, is called auto deputy, if:

 A B A B∈ ⇒ ∈*  (5.24)

The algebra U is called normalized algebra, if for each element A U∈  is 
associated a real number A , called the norm of A, satisfying the following 
requirements:

1 0 0 0

2

3

4

i A A A

i A A

i A B A B

i

( ) ≥ = ⇔ =

( ) =

( ) + ≤ +

;

α α

(triangle inequality)

(( ) ≤AB A B (product inequality)
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1 0 0 0

2

3

4

i A A A

i A A

i A B A B

i

( ) ≥ = ⇔ =

( ) =

( ) + ≤ +

;

α α

(triangle inequality)

(( ) ≤AB A B (product inequality)  (5.25)

The norm defines the metric topology from U, which is interpreted as uni-
form topology, according to which the neighborhood of an element A U∈
is given as follows:

 U A B B U B A; ; ,ε ε>( ) = ∈ − <{ }0  (5.26)

If U is a complete algebra in relation to the uniform topology, then is a Banach 
algebra. In other words, an normalized algebra with the operation of involu-
tion is complete in relation with the uniform topology and has the property,

 A A= *  (5.27)

is called the Banach algebra.
It will be called the algebra C*, the Banach U *algebra, which has the 

property:

 A A A A U* ,= ∀ ∈2  (5.28)

The normalized algebras are the substance of the Hilbert spaces.
Let H be a Hilbert space. It will be noted by L(H) the set of all bordered 

operators on H, equipped with the norm of the operators, such as:

 A A H= = ∈{ }sup ; ,ψ ψ ψ1  (5.29)

The self-adjoint operation on the Hilbert space defines the involution 
operation on L(H), and in relation with these operations and this norm, 
L(H) is an algebra C*:

 A A A H2 1= = ∈{ }sup ; ,ψ ψ ψ ψ  (5.30)

= = ∈{ }sup ; ,*ψ ψ ψ ψA A H1

≤ = ∈{ }sup ; ,*A A Hψ ψ ψ1
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 = ≤ =A A A A A* * 2  (5.31)

Note that any subalgebra U form L(H), which is auto deputy it is also an 
algebra C*. In this sense the algebra of the compact operators which action 
on H, noted by LC(H) is also an algebra C*.

Let U be an algebra C* without the identical element and U  be the alge-
bra of the pairs like α α, ; ,A C A U( ) ∈ ∈{ } with the operations:

 

1

2

3

i A B A B

i A B B A AB

i

( )( ) + ( ) = + +( )
( )( )( ) = + +( )
( )

α β α β

α β αβ α β

α

, , ,

, , ,

,, ,* *A A( ) = ( )α  (5.32)

The norm defined as follows:

 α α, sup ; ,A B AB B B U( ) = + = ∈{ }1  (5.33)

makes from U  an algebra C*.
We can say that the algebra U is the subalgebra C* of the U  algebra 

formed from the pairs (0, A). Moreover, if is used the notation α1+ A for 
the pair α , A( ), with 1 the identical element, then it can be rewritten the 
relationship between the algebras C*:

 U C U= +1  (5.34)

where C denotes the complex coefficients field.
A subspace B of an algebra U is called left ideal, if:

 A U B B AB B∈ ∈ ⇒ ∈&  (5.35)

and respectively right ideal, if

 A U B B BA B∈ ∈ ⇒ ∈&  (5.36)

If B is both left and right ideal, is called two-sides ideal.
Any ideal is automatically an algebra.
If U is an *algebra Banach and I U⊆  is a closed* two-sides ideal, 

then the rest space U I/  can be seen as an *algebra Banach. Therefore, an 



Quantum Algebraic and Stochastic Dynamics for Atomic Systems 377

element A U I∈ /  is actually a subset (a class) of elements defined for any 
element A U∈ , through:

 A A I I I = + ∈{ };  (5.37)

and which satisfies the relationship of multiplication, addition, involution, 
such as:
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( ) ( )

( )
* *

1
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3

i AB AB

i A B A B

i A A

 

 



=
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∧

∧

∧

 (5.38)

The remnant space U I/  becomes an *algebra Banach, if is introduced the 
norm:

 A A I I I = + ∈{ }inf ;  (5.39)

If U is an algebra C* then the rest algebra U I/  endowed with the properties 
above is also an algebra C*.

A C* algebra U it will be called simple, if its unique two-sides ideals 
are only the trivial ideals {0} and U. If the algebra U has the identical ele-
ment, then the algebra U does not present any two-side ideal.

There is defined a *morphism between two algebras U and B through 
the following application:

 A U A B A U∈ → ( )∈ ∀ ∈π ,  (5.40)

which satisfies the following properties:

 

1

2

3

i A B A B

i AB A B

i A A

( ) + = +

( ) = ( )
( ) =

π α β απ βπ

π π π

π π

( ) ( ) ( )

( ) ( )

( ) ( )* *  (5.41)

Let U be an algebra with the unitary element, 1. Is defined the resolvent 
set r AU ( ) of the element A U∈ , the of complex numbers set λ ∈C, so that 
λ1− A is irreversible. The resolvent of A in l will be given by the inverse 
λ1 1−( )−A , λ ∈ ( )r AU .
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The A spectrum, σU A( ), is defined by the complement of the set r AU ( ) 
in C.

Each * morphism  π  between the algebras C*, U and B, is positive,

 π π π πA B B B B( ) = ( ) = ( ) ( ) ≥* * 0  (5.42)

continuous, and satisfies the relation:

 π A A( ) ≤  (5.43)

with the norm defined as:

 π λ λ σ πA A( ) = ∈ ( )( ){ }sup ;  (5.44)

Moreover, the B A A Uπ π= ( ) ∈{ };  set determined by the  π* morphism is a 
subalgebra C* from B.

One defines a representation of C* algebra U, by the pair H ,π( ), where 
H is the Hilbert complex space and π is a *morphism of U in L H( ). The 
representation is called proper representation, if and only if π is an *iso-
morphism between U and π U( ), i.e., if and only if the nucleus of the 
*morphism π contains only the null element,

 ket A Aπ π= ∈ ( ) ={ } = { }; 0 0  (5.45)

From the presented arguments above, immediately results that any represen-
tation H ,π( ) of C* algebra U is a proper representation for the rest algebra

 U Uπ π= / ker  (5.46)

An automorphism τ of a C* algebra U, is defined as an *isomorphism of the 
algebra U in itself, so that τ is a *morphism of U of equal dimension with 
U and the nucleus equal to zero.

Each *automorphism τ of a C* algebra U, preserve the norm

 τ A A( ) = , ∀ ∈A U  (5.47)

If H ,π( ) is a representation of C* algebras U, and H1 is a subspace of H, 
then it says that H1 is invariant, or stable under the action of π, if:
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 π A H H A U( ) ⊆ ∀ ∈1 1,  (5.48)

If H1 is a closed subspace of H, and PH1 is the orthogonal projector with the 
dimension H1, then H1 is invariant under the action π if and only if:

 π πA P P AH H( ) = ( )1 1  (5.49)

There can be concluded that if H1 is invariant under the π action and if π1 
is defined by the orthogonal projector so that,

 π π1 1 1A P A PH H( ) = ( )  (5.50)

then also H1 1,π( ) is a representation of U, called sub-representation.
If H1 is invariant under the action π, then its orthogonal complement

 H H2 1= ⊥  (5.51)

is also invariant.
Therefore, can be automatically defined the second sub-representation, 

H2 2,π( ), by the action of specific orthogonal projectors

 π π2 2 2A P A PH H( ) = ( )  (5.52)

If one naturally writes

 H H H= ⊕1 2  (5.53)

and respectively each operator π A( ) is decomposes into the direct sum

 π π πA A A( ) = ( ) ⊕ ( )1 2  (5.54)

for each A U∈ , one can also write:

 π π π= ⊕1 2  (5.55)

 H H H, , ,π π π( ) = ( ) ⊕ ( )1 1 2 2  (5.56)

in terms of decomposition of the *morphisms and representations.
It says that a set M of bounded operators acts non-degenerative on the 

Hilbert spaces H, if:
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 ψ ψ; ,A M= ∀∈{ } = { }0 0  (5.57)

An important class of non-degenerate representations is the class of cyclic 
representations.

There is firstly defined the cyclic vector Ω∈ H , if for a set M of bounded 
operators, the set A A MΩ; ∈{ } is dense in H.

A cyclic representation of a C* algebra U is defined by the triplet 
H , ,π Ω( ), where H ,π( ) is a representation of U, and Ω∈ H , is a cyclic 

vector for π in H.
If H ,π( ) is a non-degenerate representation of C* algebra U, then π is 

the direct sum of a family of cyclic sub-representations.
A set M of bounded operators on Hilbert H is defined as irreducible, if 

the single closed subspaces of H, which are invariant under the action of 
M, are trivial subspaces 0{ } and H. A representation H ,π( ) of a C* algebra 
U, is called irreducible if the set π U( ) is irreducible.

Having a representation H ,π( ), is easy to construct other representa-
tions. For example, if U is a unitary operator on H, it can be introduced 
the application

 π πU A U A U A U( ) = ( ) ∀ ∈*,  (5.58)

from where results the second representation H U,π( ). This type of distinc-
tion in representation is not relevant, if the construction is based on the 
unitary operators.

Two representations H1 1,π( ), H2 2,π( ) are called equivalent, or uni-
tary, if there is an unitary operatory U from H1 to H2, so that

 π π1 2A U A U A U( ) = ( ) ∀ ∈*,  (5.59)

The equivalence of π1 with π2 will be noted by π π1 2≅ .
A linear functional ω over *algebra U is defined as being positive, if:

 ω( ) ,*A A A U≥ ∀ ∈0  (5.60)

A linear functional ω positive over a C* algebra U, with ω =1, is called 
the state.
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If one considers a non-degenerate representation H ,π( ) of C* algebra 
U and a vector Ω Ω∈ =H , 1, there can be defined as a state vector the 
linear functional over U:

 ω πΩ Ω ΩA A A U( ) = ( ) ∀ ∈,  (5.61)

Reciprocally, giving a state over C* algebra U, it follows that there is an 
unique cyclic representation Hω ω ωπ, ,Ω( ) of U, until the unitary equiva-
lence, such that,

 ω πω ω ωA A A U( ) = ( ) ∀ ∈Ω Ω ,  (5.62)

and consequently

 Ωω ω2 1= =  (5.63)

A state ω over an algebra C* is defined as being pure if the only linear 
positive functionals, upper bordered by ω, have the form λω, 0 1≤ ≤λ .

The set of all the states is noted with EU, and the set of the pure states 
with PU.

As a corollary of this reciprocity, if ω is a state over C* algebra U, and 
τ is an *automorphism of U, letting the state ω invariant,

 ω τ ωA A A U( )( ) = ( ) ∀ ∈,  (5.64)

then there is a single unitary operator determined Uw, on the space of the 
cyclic representation Hω ω ωπ, ,Ω( ) constructed on the state ω, so that:

 U A U A A Uω ω ω ωπ π τ( ) = ( )( ) ∀ ∈−1 ,  (5.65)

and

 Uω ω ωΩ Ω=  (5.66)

The cyclic representation ( , , )Hω ω ωπ Ω  constructed on the state ω over C* 
algebra U, is called the canonical cyclic representation of U associated with ω.

The fact that the representation Hω ωπ,( ) is irreducible and the associ-
ated state ω is a pure, are equivalent conditions.
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Let C* be the abelian algebra U, and is defined by the character ω for 
U, the non-null linear application,

 A U A C∈ → ( )∈ω  (5.67)

which leads the elements from algebra U in the space of complex numbers 
C, so that:

 ω ω ωAB A B A B U( ) = ( ) ( ) ∀ ∈, ,  (5.68)

The spectrum σ(U) of U, is defined as the set of all characters on U.
The connection of the ω characters with the ω states defined above is 

very simple and consists in: the fact that ω is a pure state on U is equiva-
lent with the fact that ω is a character on U.

Therefore, the spectrum σ(U) on U is a subset of the dual space U *, defined 
as the functionals space, f, linear and continuous over U, with the norm:

 f f A A A U= ( ) ={ } ∀ ∈sup ; ,1  (5.69)

Also, the sets of states EU, PU, are subsets of the dual space U *, which 
allows their topological organization by the restriction to any topology 
from U *.

The norm, or the uniform topology, is determined by the specification 
of the neighborhoods of the state ω under the form:

 U Uω ε ω ω ω ω ε; '; ' , '*>( ) = ∈ − <{ }0  (5.70)

In the *weak topology, neighborhoods of the state ω are indexed by finite 
sets of elements under the form:

U A A A U A A i nn i iω ε ω ω ω ω ε; , , , ; '; ' ' , , ,*
1 2 0 1 2 >( ) = ∈ ( ) − ( ) < ={ }

  (5.71)

Further, are introduced the topologies specific to the algebra of operators 
L(H):

 (i) If ξ ∈ H , then the application A A→ ξ  defines a seminorm on 
L(H). The strong topology represents the local convex topology 
on L(H) defined with the aid of these seminorms.
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 (ii) The strong topology σ is correlated to the strong topology and is 
obtained from it, considering all the sequences ξn{ } from H which 
satisfy the condition

 ξnn∑ < ∞
2  (5.72)

Therefore, one has:

 A A A L Hnn nn
ξ ξ∑ ∑≤ < ∞ ∀ ∈ ( )2 2 2 ,  (5.73)

which allows the definition of the seminorm

 A A nn
→ 



∑ ξ 2 1 2/

 (5.74)

on L(H), which in turn defines the strong topology σ.
 (iii) If ξ η, ∈ H , then

 A A→ ξ η  (5.75)

is a seminorm on L(H) which defines the weak topology, where 
the introduced seminorm satisfies the polarization identity:

 ξ η ξ η ξ ηA i i A in

n

n n= + +( )−

=
∑1

4 0

3

 (5.76)

 (iv) Analogically to the previous case, it can be defined the weak 
topology σ, considering the sequences ξn{ }, ηn{ } from H which 
satisfy the condition

 ξnn∑ < ∞
2 , ηnn∑ < ∞

2  (5.77)

Then the succession of next inequalities occurs:

ξ η ξ η

ξ η

n nn nn n

nn nn

A A

A A L H

∑ ∑
∑ ∑

≤

≤ 









 < ∞ ∀ ∈ ( )2 1 2 2 1 2/ /

,

  (5.78)

which allows the insertion of the weak topology σ, by the seminorm
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 A A
n

→ ∑ ξ η  (5.79)

which induce the local convex topology on L(H).
 (v) The *strong topologies and σ * strong are introduced by consider-

ing the seminorms:

 

A A A

A A A A L H
n n

→ +

→ +





∀ ∈ ( )∑ ∑

ξ ξ

ξ ξ

*

*
/

,2 2 1 2

 (5.80)

where condition (5.72) holds.

The main distinction between the *strong topology and the strong one 
arise from the fact that the application A A→ * is continuous in the first 
topology, but not also in the last one.

Moreover, between the topologies presented on L(H), can be estab-
lished the relationships:

Uniform 
Topology

< σ * strong 
Topology

< σ * strong 
Topology

< σ weak Topology

^ ^ ^
* strong 
Topology

< strong 
Topology

weak Topology

Let H be a Hilbert space. For each subset M from L(H), it will be 
considered its switched, M ', the set of bounded operators from H which 
switches with each operator from M. Therefore, M ' is a Banach algebra of 
operators which includes the identical element 1.

If M is an self-adjoint algebra, then M ' is a C* algebra of operators on 
H, which is closed for any local convex topology, previously defined.

Between the original set M and its successive switches, there are the 
relations:

 M M M MIV VI⊆ = = =( ) ( )"   (5.81a)

 M M M MV VII' "'= = = =( ) ( )
  (5.81b)

An algebra von Neumann on H, is defined a *subalgebra M from L(H), 
which satisfies the equality:
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 M M= " (5.82)

The von Neumann algebra center will be defined as follows:

 Z M M M( ) = ∩ '  (5.83)

An von Neumann algebra is called factor, if it has a trivial center,

 Z M C( ) = 1 (5.84)

Let U be a non-degenerate *algebra of operators acting on Hilbert space 
H. Then, U is dense in U ", in the way of all the topologies that are 
placed on L(H) (the Von Neumann density theorem). Moreover, there is 
the relation:

 π πU U" "( ) = ( )  (5.85)

The space with the weak σ topology of the continuous linear functionals 
on L(H) is called the L(H) predual and is noted by L H* ( ).

Similarly, is obtained the von Neumann algebra predual, M*.
A C* algebra U is *isomorphic with an von Neumann algebra, if and 

only if U is the dual Banach space (Sakai theorem).
Let M be an von Neumann algebra, and ω a positive linear functional 

on M. If occurs the relation:

ω (smallest boundedα operator Aa) = smallest bounded α operator ω ( )Aa

  (5.86)

for any sets Aα{ } from M +, with a superior border, then ω is defined as 
being the normal operator.

This definition allows the insertion of the following equivalent 
conditions:

(1) ω is a normal operator.
(2) ω is continuous weak topological σ.
(3) There is a density matrix ρ, with the property that the operator ρ is 

from the positive trace class, satisfying Tr ρ( ) =1, so that it can be 
written:
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 ω ρA A A U( ) = ( ) ∀ ∈Tr ,  (5.87)

If U is an algebra C*, the following conditions are also equivalent (Kadison’s 
theorem): U is *isomorphic with a von Neumann algebra.

Any set of increase or bounded operators from U has the smallest 
bounded element, and for any element A U∈ positive and non-null, there 
is a normal state ω over U, so that ω A( ) ≠ 0.

If π is a representation of an U algebra C*, then o state ω from U is 
called π-normal if there is a normal state ρ from π U( )" such as:

 ω ρ πA A U( ) = ( )( ) ∀ ∈,  (5.88)

Using this fact, it can be introduced a new definition of equivalence in a 
weaker but more useful sense for physicochemical characterizations.

Two representations π1, π2, of an U algebra C*, are called as being quasi-
equivalent and are written as π π1 2≈ , if each π1-normal state is π2-normal 
and vice versa.

A state ω of an U algebra C*, is called primal state or state factor, if 
πω U( )" is a factor, where πω is an associated cyclic representation.

Two states ω1, ω2, from U are called quasi-equivalent, if their cyclic 
representations πω1, πω 2 are quasi-equivalent.

If H , ,π Ω( ) is a cyclic representation associated with the state ω, for 
which:

 ω νA A x d x A M x X( ) = ( ) ( ) ∀ ∈ ∈∫ , ,  (5.89)

where v(x) represents the probability measure, and X a compact Hausdorff 
space, then it can be established the biunivocal correspondence:

 (i) H is identifiable with L X2 ,µ( );
 (ii) Ω is identifiable with the identical function 1;
 (iii) π M( ) is identified with L X∞ ( ),µ , acting as a multiplicative oper-

ator on L X2 ,µ( ).
One can construct the convex self-dual cone of operators with elements 

from C* algebra M +, by the inequality:

 d fg f g L Xν µ∫ ≥ ∀ ∈ ( )+0 2, , ,  (5.90)
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Each element from this cone has the form AA*, with A M∈ , so that the 
vectors π AA*( )Ω are being positive, and L+

2 is being the weak closure of 
these vectors. Therefore, the self-duality occurs because:

 π π ω ωA A W B B W A AB B AB AB* * * * *( ) ( ) = ( ) = ( )( ) ≥ 0  (5.91)

where in the last stage it had been used the commutativity on M.
It can be constructed the convex cone of vectors AA*Ω  in H, but if 

M is not abelian, this cone not necessarily has the property of self-duality. 
Under these conditions, the associated state

 ω( )A W AW=  (5.92)

satisfies

 ω( )* *A AB B ≥ 0  if ω ω( ) ( ), ,AB BA A B M= ∀ ∈  (5.93)

in other words, ω is a trace, fact which allows the comparison of this case 
with the abelian situation above.

In defined the conjugate operator J on H, by the relation:

 JA AΩ Ω= *  (5.94)

The trace property of the state ω, allows the writing:

 AW A A AA A W2 2
= = =ω ω( ) ( )* * *  (5.95)

through which J can be enlarged to the antiunitary operator:

 JAJB JAB BAΩ Ω Ω= =* *  (5.96)

If M is abelian, the calculation (4.57) shows that J actually implements the 
*conjugation,

 A j A A j A JAJ* *,= ( ) = ( ) =  (5.97)

If the trace is performed, the action of j is more complex, for example:

 BW A j A B W B A B A BW j A A B W1 1 2 2 1 1 2 2 1 2 1 2( ) = = ( )ω( )* *  (5.98)
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which demonstrates that j A M( )∈ ', a property overlapped by the abelian 
case.

It has been proved that a general self-dual cone can be constructed by 
modifying the *conjugation on the AA*Ω set, where A* can be replaced by 
the conjugate element j(A) and conjugation j is expected to produce an 
application from M to M '.

A von Neumann algebra M, is called σ-finite, if a collection of orthogo-
nal mutual projections has a cardinal at least countable.

Any von Neumann algebra on a separable Hilbert space is σ-finite.
The reciprocal is not generally valid: not all the Neumann algebras 

σ-finite, can be represented on a separable Hilbert space.
Let be a von Neumann algebra M on a Hilbert space H. A subset R H⊆  

is separator for M if:

 ∀ ∈ = ∀ ∈ ⇒ =A M A R A, ,ξ ξ0 0  (5.99)

If M is a subset from L(H), and R H⊆ , then is noted by [MR] the linear 
closing of the overlapping of the elements as A A M Rξ ξ, ,∈ ∈ . Also MR[ ] 
denotes the orthogonal projection in [MR]-space.

If MR H[ ] = , then the subset R H⊆  is cyclic over M. This is a dual 
relationship between the properties of cyclicity for an algebra and those 
of separation for the commutant. Thus, the following conditions are 
equivalent:

 (i) R H⊆  is cyclic over M;
 (ii) R is separator for M ';

Let be an von Neumann algebra M on a Hilbert space H. A close opera-
tor A on H is called affiliated with M, and is written as A Mη , if:

 M D A D A AA A A A M' ' ' , ' '( ) ⊆ ( ) ∧ ⊇ ∀ ∈  (5.100)

where D(A) represents the field of linear operators A.
If Ω is cyclic and separator for M, then is also cyclic and separator for 

M '. Therefore, the anti-linear operators S0 and F0 defined by:

 S A A A M0 Ω Ω= ∀ ∈* ,  (5.101)
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 F A A A M0 ' ' , ' '*Ω = ∀ ∈  (5.102)

there are both very well defined in dense fields, respectively:

 D S M0( ) = Ω , D F M0( ) = 'Ω  (5.103)

There are defined the closing operators S0, F0, by

 S S= 0 , F F= 0  (5.104)

Let ∆ be the single positive self-adjoint operator and J the unique antiuni-
tary operator in the polar decomposition of S:

 S J= ∆1 2/  (5.105)

Then, ∆ is called the modular operator associated with the pair M ,Ω{ }, 
and J is called modular conjugation.

Let M be an algebra von Neumann with the cyclic and separator vector 
Ω. Also, let ∆ be the modular operator associated, and J the modular con-
jugation. Then, the (Tomita-Takesaki Theory) relationships occur

 JMJ M= '  (5.106)

 ∆ ∆− − = ∈it itM M t R,  (5.107)

Let M be an algebra von Neumann, ω a proper state, normal on M, 
Hω ω ωπ, ,Ω( ),the corresponding cyclic representation and ∆ the modu-

lar operator associated with the pair πω ωM( )( ),Ω . The Tomita-Takesaki 
Theory actually establishes the existence of a uni-parameter group σ- weak 
continuous t t→ σ ω of the *automorphisms of M, through the definition:

 σ π πω
ω ωt

it itA A( ) = ( )( )− −1 ∆ ∆  (5.108)

The t t→ σ ω group is called the molecular group of the automorphisms 
associated with the pair M ,ω( ).

The quasi-local algebras are generated by the increasing subalgebras 
set, U Iα α{ } ∈

, which satisfies a number of structural relations which will 
be discussed further.
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The set of indices I is said that possesses the orthogonality relationship, 
if there is the relation ⊥ between the elements pairs of I, such that:

 (i) α β α β∈ ⇒ ∃ ∈ ⊥I I  (5.109a)

 (ii) α β β γ α γ≤ ⊥ ⇒ ⊥&  (5.109b)

 (iii) α β α γ δ α δ δ β γ⊥ ⊥ ⇒ ∃ ∈ ⊥ ≥& & ,I  (5.109c)

If I is a subset opened on the space of the configurations Rυ, then the con-
dition α β⊥ , is deduced that α, β correspond to some separated algebras.

Assuming that each pair α, β from the set of indices I admits the small-
est bounded index α β∨ ∈ I , can also be introduced the relations:

 (iv) α β α α β β∨ ≥ ∨ ≥&  (5.109d)

 (v) γ α γ β γ α β≥ ≥ ⇒ ≥ ∨&  (5.109e)

A quasi-local algebra is a C* algebra U and a set U Iα α{ } ∈
 of C* subal-

gebras, so that the I indices set has the relation of orthogonality and are 
satisfied the properties:

1) α β α β≥ ⇒ ⊇U U ;
2) U U= ∪α α where the bar denotes the uniform closing;
3) the algebras Ua has an identity element 1 in common;
4) there is an automorphisms σ so that σ ι2 →  (the identical 

automorphisms),

 σ α αU U( ) =  (5.110a)

 U Up p
α β,  = { }0  (5.110b)

 U Up i
α β,  = { }0  (5.110c)

 U Ui i
α β,  = { }0  (5.110d)
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as long as α β⊥ , where U Ui
α α⊆ , U Up

α α⊆  are the odd elements and 
respectively even in relation with σ; in this case,

 A B AB BA,{ } = +  (5.111)

represents the notation for the anticommutator).
One should note that if σ is an automorphisms of a C* algebra U which 

satisfies

 σ ι2 = , i.e., σ σ A A A U( )( ) = ∀ ∈,  (5.112)

so that each element A U∈  has an unique decomposition in its odd and 
even parts in relation with σ, defined as:

 A A A A
A A

= + =
± ( )+ − ±,

σ
2

 (5.113)

The even elements of U form a C* subalgebra U p of U and the odd ele-
ments, U i, of U form a Banach space.

The algebra Ua is interpreted as the physical observables algebra for a 
subsystem located in the α region of the Rυ configurations space. The quasi 
algebra U corresponds to the observables algebra enlarged to an infinite 
system.

A state ω over U represents a physical state of a system in evolution, 
and the values ω(A), ω(B), ... represent the observables values A, B,… .

Therefore, the representation Hω ω ωπ, ,Ω( ) allows a more detail 
description of the individual state ω and the von Neumann algebra πω U( )" 
is interpreted as the observables algebra for this state.

If w is a state over an U  quasi local algebra, it can be defined as commu-
tative algebra zc

w for the associated representation Hω ω ωπ, ,Ω( ) through:

 z U Uc

I
ω ω α ω

α

π π= ( ) ∩ ( )( )
∈

' "


 (5.114)

and also the algebra on infinite, by:

 z U
I

ω ω β
β αα

π⊥

⊥∈

= ( )







∪∩ " (5.115)
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Let U M I= { } ∈α α
, be a quasi-local algebra, whose generator set is formed 

by the Neumann Ma algebras. A state w over U is defined as being local 
normal if w is normal in the restriction to each algebra Ma.

In the physicochemical systems symmetries analysis in algebraic 
terms, the concept of dynamic system is essential.

A dynamical system C* is a triplet U G, ,α{ }, where U is an algebra C*, 
G is a local compact group, and a is a strongly continuous representa-
tion of G in the group of the automorphisms of U, so that for each ele-
ment g G∈ , a g is an automorphisms of U, with satisfying the following 
relations:

 α ιe = , α α αg g g g1 2 1 2=  (5.116)

The application g Ag→ ( )α  is continuous in norm for each A U∈ ; (e rep-
resents the identity element in G, ι is the application identical on U).

A dynamic system W* is a triplet M G, ,α{ } where M is a von Neumann 
algebra, G is a local compact group, and a is a weak continuous represen-
tation of G in the automorphisms group of M.

A covariant representation of a dynamical system is a triplet H U, ,π( ) 
where H is a Hilbert space,  π  is a non-degenerate representation of the alge-
bra on H, (which is normal for the W* case), and U is a strongly continuous 
unitary representation of the group G on H, so that the relation is valid:

 π α πg g gA U A U U M g G( )( ) = ( ) ∀∈ ( ) ∈* , ,  (5.117)

For each dynamic system C* (respectively W*) is defined a new alge-
bra C* respectively a von Neumann algebra) called the direct prod-
uct between U and G and noted by C U U G* ,α α( ) ≡ ⊗  (respectively 
W M M G* ,α α( ) ≡ ⊗ ).

Let M G, ,α{ } be a dynamic system W* and the U algebra action over 
the Hilbert space H. The new Hilbert space is defined L H G dg2 , ,( ) as a 
completion of the set R H G,( ), where R H G,( ) represents the set of the 
continuous functions from G in H, with compact support endowed with 
the internal product:

 ξ η ξ η= ∫ ( ) ( )g g g
G

d  (5.118)
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For the system C* or W* dynamic U G, ,α{ } where U is abelian, the action 
a is defined as ergodic, if U do not contain any nontrivial double ideal 
nontrivial a-global invariant.

The action will be called free if:

 ∀g≠e & A>0 $B | A≥B>0 & αg(B)≠B (5.119)

Should be noted that the ergodicity for the C* case means that all the orbit-
als of the action induced by the application a in the spectrum σ U( ) are 
dense in σ U( ). On the other side, the ergodicity for the W* case means that 
U does not contain non-trivial projectors a-invariant.

Suppose that C* is a dynamic system U G, ,α{ } where U is abelian and 
separable, G is a discreet group, countable and allows invariant states 
and the action a  is ergodic and free. Then the direct product C U* ,α( ) is 
simple.

Let W* be a dynamic system M G, ,α{ } where M is abelian and σ-finite, 
G is a countable group acting freely and ergodic on M. Then the direct 
product W M* ,α( ) is factor.

Is defined the weight on C* algebra U as being positive linear func-
tional ω : ,U+ → ∞[ ]0  (with the convention 0 0⋅ ∞ = ) which satisfies the 
relations:

 ω ω ωA B B A B U+( ) = + ( ) ∀ ∈ +, ,  (5.120a)

 ω α αω αA A R A U( ) = ( ) ∀ ∈ ∈+ +, ,  (5.120b)

The trace on U is defined as being the weight w which satisfies the 
relation:

 ω ωA A AA A U* * ,( ) = ( ) ∀ ∈  (5.121)

Let w be a weight on the algebra von Neumann M. The following condi-
tions are equivalent:

 (i) if Ai{ } is a sequence from M + and

 A A Mii∑ = ∈ + , then ω ω( ) ( )A Aii
= ∑  (5.122)
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 (ii) there is a set {ωα} of normal functionals, positive from M so that

 ω ωα α( ) sup ( ),A A A M= ∀ ∈ +  (5.123)

 (iii) there is a set {ωα} of normal functionals, positive from M so that

 ω ωαα
( ) ( ),A A A M= ∈∑ +  (5.124)

Suppose that w is a weight on a von Neumann algebra M. It is called 
normal weight if satisfies any conditions from above. It is called proper 
weight if A M∈  & ω A( ) = 0 implies A = 0; it is called semifinite weight if 
Mw is dense σ-weak in M.

Each algebra von Neumann allows a normal, faithful and semifinite 
weight.

Two projections E, F in an algebra von Neumann M are considered 
equivalent, writing E ~ F, if:

 ∃ ∈ = =W M E W W F WW* *&  (5.125)

A projection E in M is considered finite, if it is not equivalent with an own 
sub-projection of itself. Therefore, it is called as infinite projection.

The algebra M is considered semifinite if any projection in M contains 
a non-null finite projection; in other words, there is a set with increasing 
elements Eα{ } of finite projections in M so that Eα →1.

The algebra M is considered finite if its identical element, 1, is finite. 
Thus, M is infinite.

The algebra M is called proper infinite if all the non-null projections in 
the center M M∩ ' are infinite. The algebra M is called pure-infinite if all 
the non-null projections in M are infinite.

For any pairs of weights ϕ, y  proper, normal and semifinite from M, 
there is a continuous family of uni-parameter unitary applications in M, 
D D tψ ϕ:( ) , called Radon-Nikodim cocycles, which have the properties 

(Connes Radon-Nikodym Theorem):

 (i) σ ψ ϕ σ ψ ϕψ ϕ
t t t tD D A D D= ( ) ( )( ): : *  (5.126a)

 (ii) D D D D D Dt s t t sψ ϕ ψ ϕ σ ψ ϕϕ: : :( ) = ( ) ( )( )+
 (5.126b)
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 (iii) D D D D D D D D D Dt t t t tψ ϕ ϕ ψ ϕ ψ ϕ ω ψ ω: : ; : : :*( ) = ( ) ( ) ( ) = ( )
  (5.126c)

 (iv) ψ ϕA UAU( ) = ( )*  with U unitary in M D D U Ut tψ ϕ σ ϕ: *( ) = ( )
  (5.126d)

A M factor is considered of type I, if it has a minimal projection, non-
null. It is of type II if is semifinite, but not of type I.

A factor of type II is of type II1 if is finite and of type II∞ if is infinite.
A factor M is considered of type III, if is not semifinite, i.e., if is pure 

infinite.
If M is a factor, is defined:

 S M( ) = ∩ ( )ω ωσ ∆  (5.127)

where the index w overlaps all the semifinite normal weights from M, and 
σ ω∆( ) is the spectrum of the operator ∆ω.

This definition allows a further classification of the von Neumann fac-
tors of type III:

 (i) if S M( ) = ∞[ )0,  then M is a factor of type III1;
 (ii) if S M Z( ) = { } + < <0 0 1λ λ, , then M is a factor of type IIIλ;
 (iii) if S M( ) = { }0 1,  then M is a factor of type III0.

Certainly, these notions, properties and algebra classifications can be 
much more extended. However, for the intended purpose, namely to give 
an algebraic characterization deeply grounded in mathematics, so with a 
strong universal character of the physicochemical reactivity, the algebraic 
structures and properties presented are legitimate for this approach.

5.2.3 CHEMICAL POTENTIAL AND REACTIVE EQUILIBRIUM

In terms of algebraic quantum mechanics, the complete set of observables 
is divided into two classes: microscopic observable and macroscopic 
observables. The microscopic observables are currently identified with the 
elements of a C* algebra U quasi-local. The macroscopic observables do 
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not necessary belong to the algebra U, but to an adequate Neumann subal-
gebra π U( ) of an universal representation U ** of U . The central elements 
of the subalgebra π U( ) are called classical observables, and they have the 
properties physical systems in the classical theories; the present discussion 
follows (Bratteli & Robinson, 1987a,b; Primas & Müller-Herold, 1978; 
Müller-Herold, 1980, 1982):

• in a macroscopic pure state they have defined values without 
dispersion;

• the values specification of all the central observables determine a 
classical state;

• their temporal evolution leads to a classical dynamic system;
• they represent the sizes directly observable (experimental) of a 

system.

The temperature and the chemical potential are direct macroscopic 
observables par excellence. Since the quantum mechanics say rules that 
the observable size may be represented by the self-adjoint operators 
formed on the Hilbert space, is adding the interest to associate the opera-
tors for the temperature and the chemical potential for an adequate mac-
roscopic characterization.

To associate a self-adjoint operator to the temperature in U **, the KMS 
states separation theorem for the factors of type III for various tempera-
tures (Takesaki Theorem) makes this construction as legitimate. The KMS 
states were described in the beginning of this Chapter.

For the chemical potential the studies of (Araki et al., 1977) showed that 
it can be formed an operator associated to the chemical potential in the mid-
dle of the representation U **, respectively in a subalgebra suitable chosen.

For a system formed from a single chemical species (the electronic 
fluid evolves under the same potential generated by the system nuclei for 
a fixed coupling constant) the construction of the operator with chemical 
potential includes the following ingredients:

 (i) a C* algebra U of the quasi-local observables, together with a set 
of automorphisms located r of U which correspond to the cre-
ations and annihilation of particles located in various regions from 
space. They form an isomorphic commutative group, additive to 
the integers for which the dual group is the Lie uni-parameter 
compact γ s  (a gauge group of the first rank);
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 (ii) an algebraic field F was formed as a covariant algebra where the 
located automorphisms are unitary implemented:

 ρ( ) *a uau= , a∈U, u∈F (5.128)

which contains U as its invariant gauge part, so that γ s a a a U( ) = ∀ ∈,
γ s a a a U( ) = ∀ ∈,

A local automorphism, located r is called of class N, if occurs:

 γ s u u iNs s R( ) = ⋅ [ ] ∈exp ,  (5.129)

which corresponds the creations of N particles;
 (iii) a uni-parameter group t t→ α , strongly continuous, of the F auto-

morphisms, for which the restriction to U, represents the physical 
temporal automorphism – and which commutes with the gauge 
group:

 α γ γ αt s s t t s R⋅ = ⋅ ∈, ,  (5.130)

 (iv) a family of unitary cocycles v U1 ∈

 v v v t s Rt s t t s+ = ⋅ ( ) ∈α , ,  (5.131)

which reflects the temporal evolution perturbations due to the 
addition of a finite number of particles:

 Aav a a t Rt t t  = ∈−ρ ρ1 ,  (5.132)

where by definition was considered the notation:

 Adv x v xv x Ut t1 ( ) = ∈: ,*  (5.133)

 (v) a state factor w- α βt ,( ) KMS on U, 0 < < ∞β  which is considered 
as a state of thermodynamic equilibrium with the parameter of the 
inverse temperature, β, and which is quasi-equivalent to ω ρ .

Since ω and ω ρ  can be extended to become normal states matched 
on the same von Neumann algebra π U( )", the Radon–Nikodim–Connes 
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Theorem (Connes, 1973), allows the construction of an unique cocycle in 
π U( )", defined as:

 
D D t R

t
ω ρ ω( ){ } ∈: ,

 (5.134)

called the derivative of the cocycle Radon-Nikodim ω ρ  in relation with ω.
For the adequate constructions of the ingredients ω, αt, U, there is a 

unique real parameter μ, and a single extension Ω γs-invariant of ω from U 
in F in order to be a state β – KMS in relation to the uni-parameter group 
t t→ α γ µ. Adopting the terminology established in quantum statistics, the 
parameter μ is identified with the chemical potential.

In other words, the chemical potential may be equivalently charac-
terized by a unitary uni-parameter group which appears as a rest of the 
cocycles from above:

 exp :in t D D v
t tµβ ω ρ ω πω β

� �



 = ( ){ } ( ){ }−

−1
 (5.135)

where by definition was considered the notation:

 µ µ = + c  (5.136)

where c represents the independent real constant of ω which reflect the 
choosing of the referential zero in the chemical potential, and ρ is an auto-
morphism located by class n.

Once introduced the chemical potential in algebraic way, it becomes 
interesting its characterization, taking into account the fact that the chemi-
cal potential with changed sign represents the Parr electronegativity.

Being two factor states ω, φ - (at, β) KMS to which are associated as 
above, two chemical potentials, μ, v which satisfy the definition relations:

 exp :in t D D v
t tµβ ω ρ ω πω β

� �



 = ( ){ } ( ){ }−

−1
 (5.137a)

 exp :inv t D D v
t t

� �β ϕ ρ ω πϕ β




 = ( ){ } ( ){ }−

−1
 (5.137b)

If µ ≠ v then the representations πω and πϕ are separated (disjoint).
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Reciprocally, if ω, φ are states b-KMS factorial and normalized 
relative to the same uni-parameter group π α π t

−1 (thus considering the 
same representation for both states), it follows that ω = φ consecutively 
from the last relationships, µ� �= v.

Therefore, different chemical potential correspond to different repre-
sentation and equilibrium states.

This conclusion is also maintained for the uni-factorial states which 
have different chemical potential. In this case, the two states KMS 
involved, if are considered continuous decompositions but countable 
of the involved states, each of these sub-states is disjoint with any of 
the other decomposition sub-states, preserving the validity of the result 
above.

This characteristic of the chemical potential, i.e., Parr electronegativ-
ity with changed sign (Parr et al., 1978; Par & Yang, 1989), is kept also 
for n different species, in which case it will be used a gauge group under 
the form of a n-dimensional torus, and n various subgroups of the located 
automorphisms, responsible for the creations and the annihilations of each 
species, as will be further considered.

Further it will be showed under what conditions the chemical poten-
tials obtained as now satisfy the reactive equilibrium conditions:

 q iijj j∑ = =µ 0 1 2, , ,...  (5.138)

where μj represents the chemical potential of the j chemical species 
involved, and qij represent the stoichiometric coefficients associated to the 
species j in reaction i. Therefore, the reactive equilibrium equation is an of 
energy conservation low.

5.2.4 NON-REACTIVE SYSTEMS

For the statistical mechanics associated to a non-reactive finite system, 
the great canonical Gibbs state ρ with the temperature l kB/ b  and with 
the chemical potential μj associated to the chemical species j, will be 
given by:

 ρ A D ( ) = { }Tr  (5.139)



400 Quantum Nanochemistry—Volume II: Quantum Atoms and Periodicity

 D K
K







=
−
−

exp[ ]
{exp[ ]}

β
βTr

 (5.140)

 K H Nj jj
   = − ∑ µ  (5.141)

where A  is a random observable, H  is the Hamiltonian, and  µ j and N j
  are 

the particle number operator and respectively the chemical potential oper-
ator for the species j; the present discussion follows (Bratteli & Robinson, 
1987a,b).

Is has to be noted that the state ρ does not satisfy the condition KMS 
in relation with the temporal evolution generated by the Hamiltonian H , 
condition satisfied by the uni-parameter group generated by K:

 Ad iKt t t t t
n
n

exp ...( ) ( ) ( )




 =τ γ γ γµ µ µ1 2

1 2  (5.142)

where,

 t Ad iKtt→ = 



τ exp   (5.143)

represents the physical temporal evolution, and,

 φ γ φ φ πφ→ = −



 ≤ <( ) exp ,j

jAd iN 0 2  (5.144)

represents the gauge transformation of the first rank in relation to the 
scalar species j, from the total n considered, with the gauge group 
G associated by the torus dimension Tn:

 G T T T ... Tn 1 1 1= = × × × ( )n times  (5.145)

If we consider the algebraic field F (a quasi algebra C* generated by the 
creation and annihilation operators, a j

 , a j


*
, j n=1, , , associated to the n 

species, and each element g G∈  is parameterized by n angles 0 2≤ <ϕ πj , 
then the gauge automorphisms action will be given by:

  * *expj jg ja i aγ ϕ =    (5.146a)
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 expj jg ja i aγ ϕ = −   (5.146b)

where g g Gg→ ∈γ ,  is a continuous representation, appropriate to G in 
the automorphisms group of F.

The observables algebra A, generated by the even polynomials of the 
creation and annihilation operators will represent the gauge- invariant part 
of the algebra F:

 A F F= ⊂γ  (5.147)

Since we have not considered the chemical reactions, in other words, 
because the gauge and temporal automorphisms switch, γ τ τ γ = , 
results that A is global τ-invariant. Since A is gauge invariant, it follows 
that the state r A restriction is a condition KMS in relation with the tem-
poral physical evolution t t→τ  on A, while the state r as a state of F, is 
simply a state τ t-invariant.

Since the algebraic approach is constructed for the infinite systems, 
there is no Hamiltonian and respectively no canonical great density opera-
tor from where it can be possible the directly extraction of the chemical 
potentials. But they can be extracted from the formalism which include the 
states KMS conditions.

Supposing a factor state ω - τ βt ,( ) KMS on A, 0 < < ∞β  as was con-
sidered in the condition (v) above, adapted to the new conditions (the gen-
eralization to n chemical species). In even general circumstances, the ω 
state can be extended to a factor state Ω gauge invariant state on F, so 
that Ω

A
= ω will satisfy the KMS condition on F, in relation to the mixed 

gauge group uni-parameter temporal:

 t t t t t
n
n

→τ γ γ γµ µ µ1 2

1 2( ) ( ) ( )...  (5.148)

which explicitly contains the various chemical potentials.
Therefore, a system can be algebraically described, consists of a set 

of non-reactive chemical species through a system of covariant algebraic 
field W M N* , , , ,τ γ ω( ) explained as follows:

(1) an algebraic field M, representing a factor of type III1 with an ergo-
dic action matched r r→ α  on the group from the space of the trans-
lations R3 σ-weak continuous;
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(2) a proper action σ-weak continuous g g Gg→ ∈γ , , of the abelian 
gouge group which switches with the translations space, α γ γ α = ;

(3) a factor of type III1 of the observables algebra N M M= ⊂γ , which 
represents the invariant part of M;

(4) a temporal physical evolution t t→τ , i.e., the uni-parameter group 
σ-weak continuous of the automorphisms of M which switches 
with the automorphisms of the spatial translations, τ α α τ = , 
and with the gauge automorphisms τ γ γ τ = ;

(5) a state of thermodynamic equilibrium ω, i.e., a state ω on N 
τ α1 1− − KMS r invariant.

According to this theory, the chemical potential appears now as follow: 
w is enlarged to a state  Ω, τ t, ar – invariant on M, by:

 Ω = ω η  (5.149)

where η is an unique projection, normal and gouge invariant, of M on 
N M= γ.

Since  Ω is τ t– and γ g – invariant, the modular group automorphic asso-
ciated, σ t

Ω, switches with the temporal and gauge automorphisms, and tak-
ing into consideration the conditions (1)-(5) previously presented, it will 
be written:

 σ τ γ γ γµ µ µt t t t t
n
n

Ω =
1 2

1 2( ) ( ) ( )...  (5.150)

regaining the transformation condition on the mixed uni-parameter tempo-
ral group above, and once with it the chemical potentials associated to the 
chemical species at non-reactive equilibrium.

5.2.5 REACTIVE SYSTEMS

In treating the physicochemical reactive systems the characterization 
(4) and (5) in the final of the preceding Section, will be modified as follow-
ing (Primas & Müller-Herold, 1978; Müller-Herold, 1980, 1982; Bratteli 
& Robinson, 1987a,b):

 (4’) the temporal evolution t t→τ  switches with the translations space 
and with the gauge automorphisms of a proper subgroup Gr close 
and conex of G;
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 (5’) the thermodynamic equilibrium is given by a state ω which is a 
state τ1 1− − KMS on M rγ , the algebra of the actions fixed by the 
elements of the subgroup Gr.

Generally speaking, you cannot determine if Gr is a conex subgroup of 
G but if we will consider the previous gauge torus decomposition in the 
direct sum:

 T T Tn n m m= ⊕−  (5.151)

then, what it will be actually considered will be the part of Gr which is 
reduced to the subtorus T n m−  with m n< .

Unlike the non-reactive situation, the state w which is a state 
τ1 1− − KMS on N M r= γ  is not stable in time anymore if τ and γ  do not 
switch. Under these conditions M rγ  is the smallest subalgebra from M con-
taining the algebras of the observables that evolve in time,

 M Nr

t R t
γ τ= ∨ ( )

∈
 (5.152)

For the further construction, it is important the introduction of the dual 
group of G T n= , i.e., G T Zn n* *= = . This is a free abelian group, isomor-
phic with the group of translations in the dimensional lattice n, associated 
to the number of the chemical species involved in reactivity.

The abelian group Zn is generated by n generators u un1,( ), so that 
each element g Z* *∈  will have the representation:

 g m g u mj
j

n

j j
* * ,= ( ) ∈

=
∑

1
Z  (5.153)

and the dual group itself will be written as the direct sum:

 G gp u
j

n

j
* = ⊕ { }

=1
 (5.154)

where gp u j{ } corresponds to the free abelian group generated by u j.
Using the duality relations for the commutative groups, results that the 

decomposition (5.151), G T T Tn n m m= = ⊕− , induces a dual decomposition 
associated to the dual group,

 G Z Z Z G Gn n m m
r r= = ⊕ = ⊕− ⊥*  (5.155)
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where Gr
* is the dual group of Gr, and G Gr

⊥ ⊂ * is the annihilation group 
for Gr.

Taking into consideration the relations

 X X⊥ ⊥( ) = , X X* *( ) =  (5.156)

for an arbitrary abelian group X, based on the construction presented, the 
following diagram can be formed:

 

T G G

T G

T G G

m
r
*

r

n

n m
r r

*

= ↔ =

= × =

= ↔ =

⊥ ⊥

− −

� �
∪ ∪

� �

� �
∩ ∩

� �

Z

G Z

Z

m

* n

n m  (5.157)

where the horizontal arrows are referring to the duality relationship, and 
the diagonal references indicate the annihilation relations.

Supposing a parameterization of the group G through n angles φj so 
that γφ j

j( ) is the gauge automorphism belonging to the chemical species j, 
and assuming the set u un1,( ) of generators for its dual group, G* , so that 
uj is the r of the dual group generator corresponding to φj. Then, there is 
another set of generators v vn1,( ), with

 v q ui ij
j

n

j=
=

∑
1

 (5.158)

so that it can be written:

 
G gp v

G gp v

r i

m

i

r i m

n

i

⊥

=

>

= ⊕ { }

= ⊕ { }









1

*
 (5.159)

Moreover, by the virtue of duality, there is a new parameterization, 
0 2≤ ≤ζ πi , i n=1,  for Tm where ζi is the angle which parameterizes the 
dual group gp vi{ }.
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The bond between the two parameterizations ϕ ζi i,( ) will be given by:

 ζ ϕi ij
j

n

jq=
=

∑
1

 (5.160)

noting that ζ ζm n+1,  are right the parameterized angles for Gr.
Appealing to the same method of construction as for the non-reac-

tive systems, it is introduced the extension of the state ω to the state Ω, 
Gr-invariant from Mγr to M by:

 Ω = ω η r  (5.161)

where η γ
r

rM M: →  is the unique projection, normal and Gr invariant of 
M in its part Gr, invariant.

Therefore, Ω satisfies now the KMS condition in relation to the uni-
parameter group:

 σ τ γ τ δ δζ ν νt t t t t
m

t
n

m n

Ω = =
+

+
( )

( ) ( )...
1

1  (5.162)

where

 δ γ γ γζ φ φ φi i i in n

i
q q q

n( ) ( ) ( ) ( ): ...=
1 1 2 2

1 2  (5.163)

is the automorphic representation of 1-torus parameterized by ζi, and vi  
are the chemical potentials formed in relation with this parameteriza- 
tion.

If the last form is placed under the one of the mixed uni-parameter tem-
poral transformations, Eq. (5.150) is retrieved but with the new chemical 
potentials of the form:

 µ νj jl
l m

n

lp j n= =
>
∑ , ,...,1  (5.164)

Using this form is easy to show the relation validity from the reactive case:

q q p i mijj j ijj jll m l l il
KRONECKER

l m∑ ∑ ∑ ∑= = = =
> >

µ ν ν δ 0 1, ,...,

  (5.165)

Therefore, it can be concluded that for any subtorus Tn−m of Tn corresponds 
a set of m reactions m reactions and n-m conservation laws.
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Reciprocally, any set of m chemical reactions linearly independent in a 
system of n chemical species corresponds to a subtorus Tn−m of Tn.

The chemical reactions set is given by stoichiometric coefficients qij, 
i n=1,  & j m=1,  and is unique until the unimodular transformation 
in Z Gm

r= ⊥.
The conservation laws set is given by the stoichiometric coefficients 

qij, i n=1,  & j m n= +1, , representing the linear specific combina-
tions of the number of particles which conserve the weight of the atomic 
species in molecules, or more generally, representing a so-called resistant 
group to transformations.

For the non-reactive systems, m = 0, and Gr = G, all the chemical species 
are conserved in a closed thermodynamic system limited to its own volume.

In an extreme case, m n= , the system is necessarily open, and there are 
no linear conservation laws.

These results, in fact currently used in experimental applications and 
for more or less empirical applications, specific to the chemical thermo-
dynamics, are dressed up in the algebraic clothes of dual transformations, 
of group, with the invariants and the commutations specific to the reactive 
equilibrium conditions, of the KMS states.

This algebraic map of the chemical reactivity interpretation, allows 
for further interpretation and selection of the essential results abstracted 
from the path integral formalism, applied quantum statistical to a molecu-
lar electrons system evolution, under a potential produced by nuclei (the 
same type or not), as an enharmonic potential generalized (the coupling 
constant, left free in variation, overlaps both cases of identical set of nuclei 
or not), see Putz (2013).

5.3 FORMALIZATION OF THOMAS-FERMI THEORY

5.3.1 THOMAS-FERMI THEOREMS

The TF theory was independently developed by Thomas (1927) and Fermi 
(1927), and proposes for the total energy as the density functional, the 
expression:

 E C x dx x V x dx D UFρ ρ ρ ρ ρ[ ] = ( ) − ( ) ( ) + [ ] +∫ ∫
3
5

5 3/ ,  (5.166)
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where the electrostatic potential of a k nuclei of charges z z zk1 2 0, ,..., >  
located to R R R Rk1 2

3, ,..., ∈  is given by

 V x z x Rj
j

k

j( ) = −
=

−

∑
1

1
 (5.167)

the repulsive potential between the nuclei is given by:

 U z z R Ri
i j k

j i j= −
≤ < ≤

−

∑
1

1
 (5.168)

the repulsive potential between the electrons has the general form:

 D f g g x f x x y dxdy,[ ] = ( ) ( ) −∫∫
−1

2
1  (5.169)

and the constant CF > 0 makes the connection with the quantum theory 
through the relation:

 C mqF = ( ) ( )−
6 22 2 3 2 2 3 1
π

/ /
  (5.170)

with q corresponding to the spin states numbers (q = 2 for electrons).
The correction through the exchange term was introduced by Dirac 

(1930) through which the TF theory becomes the DFT theory and is 
amended as follows:

 E E C x dxTFD
Xρ ρ ρ[ ] = [ ] − ( )∫

3
4

4 3/  (5.171)

with

 C C qX X> = ( )0 63, / π  (5.172)

Another correction this time on the kinetic term, brought by von Weizsaecker 
(1935) transforms the TF theory in TFW theory and the last relation will be 
properly modified ; the present discussion follows (Putz, 2012):

 E E C x dxTFW
Gρ ρ ρ[ ] = [ ] + ∇( )( ) ∫ 1 2 2/  (5.173a)

with C a mG = ( )

2 2/ , where a is an adjustable parameter.
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One can consider the cumulative case of the Thomas-Fermi-Dirac-von 
Weizsaecker (TFDW) theory in which the total energy as the density elec-
tronic functional will have the general expression

 E E C x dx C x dxTFDW
X Gρ ρ ρ ρ[ ] = [ ] − ( ) + ∇( )( ) ∫ ∫

3
4

4 3 1 2 2/ /  (5.173b)

Next it will be presented a couple of definitions, sentences and theorems 
in terms of the distribution space – the functionals space (Lieb & Thirring, 
1975; Lieb & Simon, 1977, 1978; Lieb, 1976, 1981; Lieb & Oxford, 1981) 
in order to prove that the molecular processes approach in form of the den-
sity functional has a rigorous mathematical support, which confers univer-
sality and motivates deep studies in this sense (Teller, 1962; Balàzs, 1967; 
March, 1983, 1992).

DEFINITION TF1: One says that a function f belongs to the space Lp, of 
the p-integrable function, if its norm

 f x dx f p
p p

p( )( ) ≡ ≤ < ∞∫
1

1
/

,  (5.174)

is finite. In addition, if f L L p qp q∈ ∩ <,  then f L p t qt∈ < <,  and occur 
the relations:

 f f f p q t
t p q

≤ + −( ) =− − − −λ λ λ λ1 1 1 11,  (5.175)

SENTENCE TF1: If ρ ∈ ∩L L5 3 1/  then all the terms of E[ρ] and of E TFDρ[ ]  
are finite. If ρ∫ ≤ N (N the electrons numbers, not necessary a whole 
number) then E[ρ] and E TFDρ[ ]  are lower bounded by a constant C(N). 
Moreover, for any N for a C(N) fixed occurs the relation:

 E Cρ[ ] > > −∞  (5.176)

SENTENCE TF2: The application ρ ρ→ [ ]E  is strictly convex, so that 
satisfies the inequality

E E Eλρ λ ρ λ ρ λ ρ λ ρ ρ1 2 1 2 1 21 1 0 1+ −[ ] < [ ] + −( ) [ ] < < ≠( ) , ,
  (5.177)
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One introduces the following crowd of energies provided by the Sen- 
tence TF1:

 E N E L L N( ) = [ ] ∈ ∩ ={ }∫inf ,/ρ ρ ρ5 3 1  (5.178)

and only the electronic contribution will be considered through:

 e N E N U( ) = ( ) −  (5.179)

which will allow the introduction of the following theorem which provides 
more than the existence of a lower bounds, and even a minimal energy.

THEOREM TF1: The function e(N) is convex, negative if N > 0, not in 
ascending and lower bound. Moreover, there is the crowd:

 E N E L L N( ) inf [ ] ,/= ∈ ∩ ≤{ }∫ρ ρ ρ5 3 1  (5.180)

The first part of the theorem is provided by the Sentence TF2, and in the 
second part from the monotonicity of e(N) and E(N). With these it can be 
proved the following theorem.

THEOREM TF2: There is a unique density ρ which minimizes E[ρ] under 
the condition

 ρ∫ ≤ N  (5.181)

Thus, it can be concluded that the function E(N) is non-ascending, 
bounded and convex and hence continuous, which allows the following 
definition.

DEFINITION TF2: The number Nc is called critical value of N and rep-
resents the highest value of N for which N N' <  implies E N E N'( ) > ( ). 
Equivalently:

 if E E N
N

∞( ) = ( )
→∞

lim  then N N E N Ec = ( ) = ∞( ){ }inf  (5.182)

For N Nc≥  there is the relation:

 E N E N const N Nc c( ) ( ) .= + −( )  (5.183)

With this one can show that the following theorem is valid.
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THEOREM TF3: For N Nc ≤  there is an unique minimization for ρ satisfy-
ing ρ∫ = N . In the interval [0, Nc], E(N) is strictly convex and monotoni-
cally decreasing. For N Nc>  there is no minimization for ρ that satisfying 

ρ∫ = N  and E N E Nc( ) = ( ).
Performing the variational derivative of E[ρ] there is obtained:

 δ
δρ

ρ φρ
E C x xF= ( ) − ( )2 3/  (5.184)

with the potential:

 φ ρρ = − − −

∫V x y x y dy( ) ( ) 1  (5.185)

In order to ensure ρ∫ = N , the Lagrange multiplier have to be introduced, 
being this μ the chemical potential. Therefore, it is expected that:

 δ
δρ

µ ρ
E if x+ = ( ) >0 0,  (5.186)

and respectively:

 δ
δρ

µ ρ
E if x+ ≥ ( ) =0 0,  (5.187)

the situations with negative densities being prohibited.
The two cases from above can be compressed in the formal Thomas-

Fermi equation, as follows:

 C x x xF ρ φ µ φ µρ ρ
2 3 0/ max ,( ) = ( ) −  ≡ ( ) −   (5.188)

This equation allows, along with the other topological properties pre-
sented, the introduction of the following theorems.

THEOREM TF4: If the ρ density minimizes the functional E[ρ] for 
ρ∫ = ≤N Nc, then ρ satisfies the Thomas-Fermi equation (the last equa-

tion) for a given (unique) value μ(N). Reciprocally, if ρ and μ satisfy 
the Thomas-Fermi equation and ρ ∈ ∩L L5 3 1/ , then ρ minimize E[ρ] for 

ρ∫ = N . If N Nc= , then µ = 0.

THEOREM TF5: If E(N) is continuous and differentiable and
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 dE
dN

if N NC= − ≤µ ,  (5.189)

together with:

 dE
dN

if N NC= ≥0,  (5.190)

then μ(N) is the chemical potential.
An equation in the distributions sense, equivalent with the Thomas-

Fermi equation, can be introduced by taking into account the expression 
of the Coulomb-Poisson potential, resulting the Thomas-Fermi differential 
equation with φ x( ) instead of φρ x( ), thus:

 

− = −( ) − ( )

= −( ) − ( ) −

∑
∑ −

∆φ
π

δ ρ

δ φ µ

( )

[ ]/ /

x z x R x

z x R C x

i i

i i F

4
3 2 3 2  (5.191)

The differential equation TF promotes of the following definition intro- 
duction.

DEFINITION TF3: A function defined on an open crowd M R⊂ 3 is super-
harmonic on M if, for almost all x M∈  and for almost all the spheres 
centered in x but contained in M, f(x) is at least equal to its average on the 
sphere, i.e.

 f x f x y dyy R( ) ≥ ( ) +( )−

=∫4 1π  (5.192)

The condition is the same as for ∆f ≤ 0 (in the sense of distributions) 
in M. It is said that the function f(x) is subharmonic if − f(x) is super-
harmonic, and f(x) is said harmonic if it is both subharmonic and 
superharmonic.

One can generalizes the TF functional density, by multiplying the term 
D ρ ρ,[ ] through a parameter b>0. Then

 e N E N U( ) = ( ) −  (5.193)

is a parameters function of CF, {zj} and b. It will be considered also the 
scaling of the critical number of electrons,
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 N b N bc c( ) = /  (5.194)

and will be adopted the following notations:

 K C dxF= ∫ ρ 5 3/  (5.195a)

 R bD= [ ]ρ ρ,  (5.195b)

 A v x dx= ( )∫ ρ  (5.195c)

with ρ minimizing the E[ρ] for

 ρ∫ = ≤N Nc  (5.195d)

thanks to this identity, one can introduce the following theorem of 
Feynman-Hellman.

THEOREM TF6: The size e N C z bF j, , ,{ }( ) is a function C1 in the k + 3 
arguments. Then, the size e is convex in N and concave in the arguments 
C z bF j, ,{ }( ). Moreover, the next equalities are valid:

 ∂
∂

=
e

C
K
NF

 (5.196a)

 ∂
∂

=
e
b

R
b

 (5.196b)

 ∂
∂

= −
e
N

µ  (5.196c)

 ∂
∂

= − ( ) −∫
−e

z
x x R dx

j
jρ

1
 (5.196d)

which implies also the relation:

 ∂
∂

= ( ) − −{ }→

−E
z

x z x R
j

x R j j
j

lim φ
1

 (5.196e)
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Equally, the following theorems of the virial theorem type can be 
formulated:

THEOREM TF7:

a) 5
3

2K A R N= − − µ  (5.197a)

b) for an atom k ( =1), 2K A R= −  (5.197b)

The first relation is obtained from the Thomas-Fermi equation, multiplied 
with ρ and then integrated. Alternatively, one can proof the assertion (a) by 
noting

 G Eρ ρ µ ρ[ ] = [ ] + ∫  (5.198)

which is minimized for all ρ ∈ ∩L L5 3 1/ . Then by scaling the density

 ρ ρt x t x( ) = ( )  (5.199)

There follows that G tρ[ ] reaches its minimum to t =1, while and from the 
extreme condition

 dG dttρ[ ] =/ 0  (5.200)

the relation TF7-(a) is obtained.
The second relation of the TF7 Theorem is obtained by scaling

 ρ ρt x t tx( ) = ( )3  (5.201a)

so that

 ρt N∫ =  (5.201b)

Then, E tρ[ ] reaches its minimum to t =1 and from the condition

 dE dttρ[ ] =/ 0  (5.202)

from where the relation TF7-(b) immediately results.
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However, by further scaling the coordinates with a parameter l > 0, 
R lRj j→  and noting with z and respectively with R the assembly of the 
charges and nuclear coordinates, one may obtain – as a consequence of the 
functional scaling properties E tρ[ ], the following relations for the total 
energy, the chemical potential, the electronic density and the Thomas-
Fermi potential, respectively:

 E z N lR l E l z l N R, , , ,( ) = ( )−7 3 3  (5.204a)

 µ µz N lR l l z l N R, , , ,( ) = ( )−4 3 3  (5.204b)

 ρ ρz N lR x l l z l N R l x, , ; , , ;( ) = ( )− −6 3 3 1  (5.204c)

 φ φ( , , ; )) ( , , ; )z N lR x l l z l N R l x= − −4 3 3 1  (5.204d)

Further, we will consider a more general form of the TF functional:

 E j x dx V x x dx Dρ ρ ρ ρ ρ[ ] = ( )  − ( ) ( ) + [ ]∫ ∫ ,  (5.205)

where j is a convex function C1 with j j( ) '( )0 0 0= = ; moreover, is noted the 
explicit absence of the repulsive term U. This renunciation it comes from 
the fact that if the potential V x( ) is not necessary the Columbic potential, 
the term U does not have a clear meaning. The equation Euler-Lagrange 
may be associated to the last equation when considering

 φ ρρ = − ∗−V x 1  (5.206)

where

 f g x f x y g y dy∗( ) = −∫( ) ( ) ( )  (5.207)

represents the convolution of f with g; that is, the correspondent of the TF 
formal equation will be generated as:

 φ µ
ρ ρ

ρ x
j x AlmostEveryWhere for x

Almo
( ) −

= ( )  ( ) >

≤
...

' ...

...

0

0 sstEveryWhere for xρ ( ) =





 0
 (5.208)
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which for

 j CF' /ρ ρ[ ] = 2 3  (5.209)

can be rewritten in the optimal form:

 φ µ φ µ ρρ ρx x j x( ) − ≡ ( ) −  = ( ) max , '0  (5.210)

The TF theory and electronic description is considered as the referential 
for the uniform distribution of electrons in atoms and molecules, respect-
ing which the electronic accumulation in bonding is further described, 
usually as a perturbation – as in DFT when density gradient expansions 
are considered, or by general reformulation of the problem in terms of 
localization – in which case special quantum treatment as provided by 
stochastic Fokker-Planck modeling is needed; these issues will be in next 
addressed and unfolded.

5.3.2 ELECTRONIC LOCALIZATION PROBLEM

Let’s consider the ”spherical” referential electronic picture as the most 
useful in establishing the uniform electronic distribution by indicating the 
occupation of the all-possible electronic levels in a semiclassical quantum 
frame (without explicit exchange-correlation involvement). Actually, the 
Fermi sphere in a momentum space finely defines the total homogeneous 
kinetic energy as:

 τ s
Fp

m
r( ) =

2

02
 (5.211)

while the quantum nature of the kinetic energy (5.211) is covered by 
involving the quantum (Heisenberg) uncertainty

 ∆ ∆ ∆ ∆ ∆ ∆p p p x y z hx y z ≅ 3  (5.212)

in uniform density computation. This suggests that the density of states 
in the Fermi volume of the impulse pF has to be normalized to the inverse 
of the cube power of Planck constant h, while the density of electrons is 
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reached by multiplying the density of states with the electron multiplic-
ity 2 1 2 1 2/( ) + =  for every occupied state. The obtained density-Fermi 
impulse relationship:

 ρ π
π

ρr r r r( ) = ⇒ ( ) = 





 ( )d p

h
d p hF

Fr 2 4
3

3
8

3

3

1 3
1 3

/
/  (5.213)

allows the Thomas-Fermi kinetic energy unfolding as the density func-
tional (Parr & Yang, 1989; Garcia-Gonzales et al., 1996; Chan & Handy, 
1999; Bartolotti & Acharya, 1982; Dawson & March, 1984; Baltin, 
1987):
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with the help of which the total Thomas-Fermi energy functional takes the 
form (Putz, 2008):

E C d d d V dTF TFρ ρ
ρ ρ

ρ[ ] = ( ) +
( ) ( )

+ ( ) ( )∫ ∫∫ ∫r r
r r

r
r r r r r5 3 1 2

12
1 2

1
2

/

  (5.215)

that can be seen as the first approximation for the density functional total 
energy.

From physical point of view worth noted that the kinetic TF energy 
exactly corresponds to the total energy of the free electrons in a crystal, 
V r( ) = 0 in Eq. (5.215), equivalently with the fact that the electrons are 
not “feeling” the nuclei, i.e., electrostatic attractions are excluded, being 
as close each other to avoid reciprocal repelling. Such picture suggests that 
free electrons are completely non-localized leaving with the condition of 
complete cancellation of the electronic inter-repulsion; this feature may be 
putted formally as Becke (1988):

 e e2

1 2

2

1 2

0
r r r r−

→
−

=
λ

λ,  (5.216)
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However, the model in which the (valence) electrons are completely free 
and are neither “feeling” the attraction nor the repulsion is certain not 
properly describing the nature of the chemical bond. In fact, this limitation 
was also the main objection brought to Thomas-Fermi model and to the 
atomic or molecular approximation of the homogeneous electronic gas or 
helium model in solids. Nevertheless, the lesson is well served because 
Thomas-Fermi description may be regarded as the “inferior” extreme in 
quantum known structures while further exchange-correlation effects may 
be added in a perturbation manner.

The idea of introducing exchange and correlation effects as a per-
turbation of the homogeneous electronic system could be considered 
from the interpolation of the energetic terms for 0 1≤ ≤λ  in Eq. (5.215). 
Parameter λ is defined as a parameter of the electronic coupling, with a 
slightly (adiabatically) scaling of the perturbation from the homogeneous 
electronic systems, λ = 0, until the maximal inter-electronic interaction, 
λ =1 (in accordance with Pauli principle). Therefore, the overall interpola-

tion [ ]•∫ dλ
0

1

 will be spread over the terms which contain the intermediate 

degree of exchange and correlation interactions; since it accounts for the 
electronic inter-repulsion while indexing the electronic presence/absence 
in a given spatial region the degree of electronic localization is in this way 
furnishes.

The coupling parameter λ will serve as a switcher between the ref-
erential Thomas-Fermi uniform case and the full interaction through the 
density limit (Putz, 2008):

 lim
λ λρ ρ

→
( ) = = ∩( )

1 1 2r r r r  (5.217)

Actually, the density (5.217) has a major role in defining exchange-
correlation functionals. To see that let’s firstly consider the conditional 
electronic density g r r1 2, ;λ( ) indicating that the electronic density in r1 is 
conditioned by the presence (localization) of another electron (any from 
the total N in the system) in r2. Mathematically, this is expressed by using 
the conditional probabilities:

 g r r
r r r

r1 2
1 2

2

, ;λ
ρ

ρ
( ) =

= ∩( )
( )

 (5.218)
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fulfilling the Pauli principle by means of the integration rule:

 ρ λ ρr r r r r r r2 1 2 2 1 2 2 0( ) ( ) = ∩( ) =∫ ∫g d d, ;  (5.219)

saying that the spatial average of the electronic reciprocal constraint van-
ishes. This behavior opens the possibility in introducing the conditional 
probability of electronic holes,

 h gr r r r1 2 1 2 1, ; , ;λ λ( ) = ( ) −  (5.220)

providing the associate integration rule (Ayers & Levy, 2001; Koch & 
Holthausen, 2000):

 ρ λr r r r2 1 2 2 1( ) ( ) = −∫ h d, ;  (5.221)

consecrating a sort of negative normalization of the exchange and correla-
tion density of holes:

 ρ λ ρ λxc hr r r r r1 2 2 1 2, ; , ;( ) = ( ) ( )  (5.222)

Now, once this exchange-correlation hole density is mediated over the 
coupling factor l the averaged exchange-correlation density of holes is 
generated:

 ρ ρ λ λxc xc dr r r r1 2 1 2
0

1

, , ;( ) = ( )∫  (5.223)

allowing the formal writing of exchange-correlation density functional 
from as a generalized version of the inter-electronic interaction term:
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with the help of the introduced radius of the λ-mediated exchange-corre-
lation density of holes:

 R
r

dxc
xc− ( )( ) = −

( )( )
∫1

1
1 2

12
2r r

r r r
r, :

, ,
ρ

ρ ρ
 (5.225)
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The radius Rxc r( ) could be considered as a functional of density (5.217) 
with the leading term being defined in the short limit of the distance, i.e., 
being of the inter-particle average radius order,

 4
3

1 3
40

3
0

1 3
1 3π

ρ π
ρr r=

( )
⇒ = 






 ( )−

r
r

/
/  (5.226)

known as the Wigner radius for indexing the volume of a sphere contain-
ing (localizing) a single electron (from the total of N) belonging to the den-
sity family (5.217), although, also other quantities accounting for electron 
localization such as the domain averaged Fermi hole (Ponec & Cooper, 
2007) or the electron sharing index (also known as delocalization index) 
have been in the last decade proposed (Matito et al., 2007).

In these conditions, the inverse radius (5.225) could be expressed 
around the inverse of the Wigner radius in a gradient density expansion 
(Becke, 1988):
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...  (5.227)

while, by considering it back in exchange-correlation energy (5.224) 
produces, after the integration by parts, the generalized gradient density 
functional:
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+∫
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... ...dr  (5.228)

The restriction to the first term of the series (5.228) corresponds to the 
cases where the spatial distance of variation in electronic density highly 
exceeds the corresponding Wigner radius (5.226) this way producing the 
famous local density approximation (LDA) (March et al., 2003):

 E e dxc
LDA

xcρ ρ ρ[ ] = ( )  ( )∫ r r r  (5.229)
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with exc being the exchange and correlation density per particle, that can 
be further approximated (see in the following paragraphs) as (Zhao et al., 
1994; Gritsenko et al., 2000; Zhao & Parr, 1992; Lam et al., 1998; Gaspar & 
Nagy, 1987; Levy, 1991):

 e e e
r r

a uxc x cρ ρ ρ[ ] = [ ] + [ ] = −








 + −

+








 [ ]0 458 0 44

7 80 0

. .
.

. .  (5.230)

In fact, the LDA stands as the immediate step after TF approximation; it 
can be extended also for systems with un-pair spins by the so-called local 
spin density approximation (LSDA) (Guo & Whitehead, 1989, 1991; 
Dunlap, 1988; Dunlap et al., 1990; Dunlap & Andzelm, 1992; Harrison, 
1987; Becke, 1986; Manoli & Whitehead, 1988; Filippeti, 1998; 
Liu, 1996):

 E E Exc xc xcρ ρ ρ ρ ρ= +  =   +  ↑ ↓ ↑ ↓  (5.231)

while further inclusion of the gradient terms in Eq. (5.228) establishes the 
general gradient approximation (GGA).

Worth noting that when undertaken GGA, beside the gradient terms 
arising in exchange-correlation energy, the gradient correction of the 
kinetic energy functional has to be as well considered providing terms of 
which the standard one takes the von Weizsäcker form (Romera & Dehesa, 
1994; Murphy, 1981):

 τ
ρ

ρW r
r
r

( ) =
∇ ( )

( )
1
8

2

 (5.232)

While more analytical discussions about various approximations and den-
sity functionals are the subject of different monography (Putz, 2012), here 
we would like only to present the practical difference between the local 
and gradient density approximations for a solid-state case. For instance, 
Figure 5.1 presents the band structure and the density of states (DOS) for 
the R m3  oxide of the Cobalt transitional metal (CoO) calculated with either 
LSDA or GGA approximations (Dufek et al., 1994). Nonetheless, at the 
level of bands structure of the solids and crystals an inevitable localization 
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paradox emerges namely, to use the real 3D electronic densities in furnish 
a localization description in the reciprocal (energy) space.

Regarding the energy bands there can be noted that, around the Fermi 
level EF, LSDA approach is less relevant in indicating the energetically 
gap respecting the GGA computation. The difference is even more drastic 
in DOS representations for employed approximations in d orbital sepa-
ration t a eg g g2 1= +( ),  due to the central ion of cobalt trigonal symmetry 
coordination. In fact, with LSDA a strong mixing of the orbitals a g1  and eg

,  
is recorded while in the case of GGA-DOS the bands with the symmetry 
a g1  are up and down shifted for the respective down and up spin projec-
tions resulting a clear separation from states with eg

,  symmetry.
Recently, it was found a way to avoid the electronic localization para-

dox through introducing specific electronic localization functions (ELF) 
in real space. Nevertheless, an ELF should relay on combination of the 
gradient and homogeneous energetic density functionals, in accordance 
with Pauli principle, shaping for instance as (Becke & Edgecombe, 
1990):

 ELF
T
s W

TF

= +
( ) − ( )

( ) 



























−

1
2 1

τ τ
ρ

r r
r

 (5.233)

by emphasizing the excess of the kinetic energy difference τ τs Wr r( ) − ( ) 
“normalized” to the referential kinetic TF homogeneous behavior.

Worth remarking that the localization function (5.233) acts like a sort 
of density, with values between 0 and 1 corresponding with maximum 

FIGURE 5.1 Left: the anti-ferromagnetic structure CoO; right: the band structure and 
the density of state (DOS) in LSDA and GGA approximations, respectively; the upper 
and down arrows are associated with the spin orbital projections; after Dufek et al. (1994).
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delocalization and localization, respectively. This heuristically proposal 
has the merit to give an analytical reflection of the qualitative valence shell 
electron pair repulsion (VSEPR) geometric model (Bader et al., 1988), 
with the immediate consequence in topological characterization of the 
chemical bond (Silvi & Savin, 1994). In solid-state case, the reliability 
of above ELF in describing the chemical bond in real space is illustrated 
in Figure 5.2 for the Li and Sc crystals. Atomic and molecular levels are 
in next section illustrated with which occasion further ELF characteriza-
tion and developments are presented within the more complex formulation 
of quantum dynamical (open) systems.

5.4 FOKKER-PLANCK DYNAMICS OF QUANTUM SYSTEMS

5.4.1 NON-EQUILIBRIUM DYNAMIC LEVEL

The electronic states associated to the cyclic and oscillatory reactions, 
reactions with instabilities, etc. are obeying for the discrete state dynam-
ics to the quantum general evolution equation (QME: quantum master 
equation) (see Gray & Scott, 1990; van Kampen, 1987; Gardiner, 1994; 
Risken, 1984; Haken, 1978, 1987, 1988):

 ∂
∂

= →( ) − →( ) ∑W
t

w m n W w n m Wn

b
m n

m
 (5.234)

FIGURE 5.2 The localization domains for Li (left) and Sc (right) crystals based on the 
electronic localization function (ELF) (5.233); after Silvi & Gatti (2000).
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and in case of continuous dynamic equation:

∂ ( )
∂

= →( ) ( ) − →( ) ∫
W x t

t
w x x W x t w x x W x t dxb b

b
b b b b b b b b b

,
, ( , )# # # #

  (5.235)

where Wn or W represent the probability density (discreet or continuous). 
A special form of this general equation of quantum evolution represents 
the Fokker-Planck (FP), which is obtained for the transition probability w 
given for the expression:
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Using the filtering property of the Dirac function,

 f x x x x dx f x x, ' ' ', '( ) −( ) = ( )∫ δ  (5.237)

along with the identities
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the Fokker-Planck equation result from (5.235) under the form
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with the potential dependency of force type:

 D x d
dx

V xb
b

b
1( ) ( ) = − ( )  (5.240)

This is the probability density level of the describing of the dynamic non-
equilibrium of the electronic states associated to some atomic and molecu-
lar species involved in the reactive chain (cycles, oscillations).
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The next level of describing roots form the introduction of the 
Markovian processes which will be defined next. For instance, in the 
dynamic reactive chain

 A Bx t x t x ta a

e

b b

e

c c

e
, , , ...( )→ ( )→ ( )→

− − −

C  (5.241)

the electronic evolution is equivalent with its probability density trans-
forming so that the equivalent (xc, tc) is correlated with the event (xb, tb) 
which is correlate with the event (xa, ta) in a probability density row:

 W x t W x t x t W x t x t x ta a b b a a c c b b a a1 2 3, , ; , , ; , ; , ...( ) → ( ) → ( ) →  (5.242)

The Markovian processes are characterize by the fact that all the infor-
mation is contained in the first two functions W1 and W2 correlated by the 
transition probability ρ x t x tb b a a, ; ,( ) (conditioned probability density):

 W x t x t x t x t W x tb b a a b b a a a a2 1, ; , , ; , ,( ) = ( ) ( )ρ  (5.243)

the transition probability (conditioned probability density) satisfies the 
following properties:

 ρ x t x tb b a a, ; ,( ) ≥ 0  (5.244)

 dx x t x ta b b a a∫ ( ) =ρ , ; , 1  (5.245)

 W x t dx x t x t W x tb b a b b a a a a1 1, , ; , ,( ) = ( ) ( )∫ ρ  (5.246)

An immediate application of those properties is constituted by the equa-
tion Chapman-Komogorov-Smoluchowski (CKS), in fact the equation on 
defining the Markovian processes. For example, it can be immediately 
write that:

 

W x t x t dx W x t x t x t

dx x t x t

c c a a b c c b b a a

b c c b b

2 3, ; , , ; , ; ,

, ; ,

( ) = ( )
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∫
∫ ρ (( ) ( ) ( )ρ x t x t W x tb b a a a a, ; , ,1  (5.247)

and, on the other hand,
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 W x t x t x t x t W x tc c a a c c a a a a2 1, ; , , ; , ,( ) = ( ) ( )ρ  (5.248)

By comparing the two expressions (5.247) and (5.248) immediately results 
the equation CKS:

 ρ ρ ρx t x t dx x t x t x t x tc c a a b c c b b b b a a, ; , , ; , , ; ,( ) = ( ) ( )∫  (5.249)

This equation significance is immediate: the probability of transition for 
the event (xa, ta) to the event (xa, tc) can be calculated as the product of 
the transitions probability of the initial state (xa, ta) to an intermediary 
one (xb, tb) to the final one (xc, tc) and summed (integrated) over the all 
possible intermediate values.

Using the property (5.246) form above in the Fokker-Planck equation 
(5.239) in probability densities, it is obtained the Fokker-Planck equation 
in conditioned probability density:
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  (5.250)

Now one can introduce the functional density (of probability) specific to 
the nonequilibrium treating of the electronic dynamic in electro-reactivity.

In essence, the Fokker-Planck equation is a continuous equation, 
of temporary evolution of the electronic flux, compelled to an external 
potential V(x) with the drift factor D(1) and one of diffusion D(2) (stochastic 
noise). This thing can be easily notice if the Fokker-Planck equation is 
rewritten (5.250), as example, in a hydrodynamic form:
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in which the conditioned probability of the density flow under the func-
tional form there was introduced:
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If the natural condition of frontier is considered

 ρ x t x tb b a a xb
, ; ,( ) =→±∞ 0  (5.253)

automatically results also the conditioned probability flowing condition

 j x t x tFP b b a a xb
, ; ,( ) =→±∞ 0  (5.254)

as well as the implication:

 ∂
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b
b b b a aρ , ; , 0  (5.255)

from where one will retrieve the normalization condition in agreement 
with the previous property (5.245), for the conditioned probability density.

Another important observation results from the fact that, for the initial 
probability density of the Dirac distribution form

 W x t x xa a a a1
# #,( ) = −( )δ  (5.256)

in conformity with the property (5.246) and with the Dirac property (5.237), 
results that at the moment tb the probability density will be of the form

 W x t x t x tb b b b a a1 , , ; ,( ) = ( )ρ  (5.257)

This fact says that ρ x t x tb b a a, ; ,( ) is a special probability density which 
evolve with the increasing of tome (at tb) from the local Dirac distribu-
tion (at ta). When an initial Gaussian distribution is considered (since all 
continuous distributions can be eventually reduced to a Gaussian form, 
according with the central limit theorem)

 W x t xa a a1
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 (5.258)

the Markovian probability density (5.246) becomes:
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The (5.259) distribution automatically allows also the calculation of the 
Markovian probability flow, abstracted from the rewritten of Fokker-
Planck equation on the probability density level (5.239), in an appropriate 
hydrodynamic form:

 j x t D x W x t
x

D x W x tFP b b b b b
b

b b b, , ,( ) = ( ) ( ) −
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( ) ( )





( ) ( )1
1

2
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The probability density flow (5.260), or the one of conditioned probability 
density (5.252), stay on the basis of analytically representation of the no 
equilibrium dynamic for the electro-reactive chains in a temporary scale 
which cover, but also it overcome the one of the activated chemical com-
plex. For the complexity of this study, at least from the perspective of the 
involving the path integrals in the dynamic of the respective equilibrium 
and no equilibrium, becomes extremely instructive the solution of Fokker-
Planck equation in the conditioned probability density form (5.250), from 
where, the calculation of the probability density as well as of the associ-
ated currents are immediate.

5.4.2 PROPERTIES OF FOKKER-PLANCK EQUATION

Before the effective calculation of the conditioned probability density, 
worth exposing several essential characteristics of the Fokker-Planck 
equation as well as of the connection with the Schrödinger equation. To 
this aim one will be starting with the effective deduction of the Fokker-
Planck equation. It can be successively write for the conditioned probabil-
ity density (Feynman & Hibbs, 1965; Balescu, 1975):
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  (5.261)

where the so-called moments were induced

 M x t t dx x x x t x tk a a b b b a
k

b b a a, ; , ; ,( ) = −( ) ( )
−∞

+∞

∫ ρ  (5.262)

the upper expansion having the name of Moyal-Kramers series (MK). If 
it is used the property of the probability densities, it can be calculated the 
difference
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(5.263)

which can be rewritten on its turn under the form:

 ∂
∂

( ) = ( ) ( )
t

W x t L x t W x t
b

b b KM b b b b1 1, , ,  (5.264)

where the Kramers-Moyal operator (KM) was introduced
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with the KM coefficients given by the expression:

 D x t
M x t tk

b a
k b a a( )

→
( ) =

+( ), lim
, ;

ε

ε
ε0

 (5.266)

It is obvious that, in the light of the same property (5.246), results an equa-
tion alike and in the conditioned probability density, the direct equation KM:

 ∂
∂

( ) = ( ) ( )
t

x t x t L x t x t x t
b

b b a a KM b b b b a aρ ρ, ; , , , ; ,  (5.267)
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The Fokker-Planck equation is automatically obtained by cutting the 
expansion of the KM operator (5.263) in the second order (Pawula, 
1967)
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  (5.268)

The stationary solution ρst bx( ) will automatically satisfy the equation:
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∂
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with which help, the FP operator abstract from the KM operator (5.265), 
be cut off in the second order so it can be rewritten as:
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(5.270)

For revealing the adjoint Fokker-Planck equation and the associate opera-
tor one starts from the CKS equation (5.249); by taking the derivative of 
this equation respecting tb and with the direct KM equation (5.267) there 
results:
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Next, the operational equality will be taking into consideration:
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by which the last equality becomes:

∀ ( )

( ) ∂
∂

( ) +
−∞

+∞

∫

ρ

ρ ρ

x t x t

dx x t x t
t

x t x t L

b b a a

b b b a a
b

c c b b

, ; , :

, ; , , ; , 

KM b b c c b bx t x t x t
+

( ) ( )







=, , ; ,ρ 0

  (5.273)

from where, by re-labeling the events x t x tc c b b, ,( ) = ( ) and x t x tb b a a, ,( ) = ( ) 
the adjoint KM equation results:

 ∂
∂

( ) = − ( ) ( )
+

t
x t x t L x t x t x t

a
b b a a KM a a b b a aρ ρ, ; , , , ; ,  (5.274)

The adjoint KM operator will result by replacing in the relation (5.272) the 
KM operator with its direct expression (5.265), so obtaining:
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In case when the KM operator is limited to the adjoint FP operator, this 
one, on its turn, can be rewritten in function of the stationary solution 
(5.269) of the direct Fokker-Planck equation:
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By comparing the operators L xFP b
 ( ) and L xFP b



+
( ) one can immediately 

observe that the FP operator is not an autoadjoint operator; However, in 
order to make the FP operator to be autoadjoint, new operators are intro-
duced, defined in conformity with the relation between the operators from 
above (5.272):

 O x
x

L x xb
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FP b st b
� �( )• =
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ρ
ρ  (5.277)
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ρ
1  (5.278)

as based on the operational properties (5.272). Because the opera-
tor L xFP b
 ( ) do not depend on the time tb, the searching of the solutions 

rn b bx t( , ) naturally appears, which satisfy the factorization condition:

 ρ ϕ λn b b n b n bx t x t, exp( ) = ( ) ( )  (5.279)

with the help of which the direct Fokker-Planck equation (5.273) will 
be reduced to the eigen-values equation (the adjoint one will be similar 
reduced):

 L x x xFP b n b n n b
 ( ) ( ) = ( )ϕ λ ϕ  (5.280)

In conformity with the stationary solution case, to the proper value λ0 0=  
is corresponding the eigen-function ϕ ρ0 x xb st b( ) = ( ). If, in addition, there 
are considered the transformations of the eigen-functions so that:

 ϕ ρ ψn b st b n bx x x( ) = ( ) ( )  (5.281)

 ϕ
ρ

ψn b
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n bx
x

x+ +( ) =
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( )1  (5.282)

the problem of the eigen-values of the Fokker-Planck equation (5.280) 
became a problem of the eigen-values for the autoadjoint operators:

 O x x xb n b n n b
 ( ) ( ) = ( )ψ λ ψ  (5.283)

Observe the fact that the new the eigen-value equation (5.283) has the 
same eigen-values λn as the original Fokker-Planck equation (5.280), hav-
ing, in addition, assured the viability of the completion and ortho-normal-
ization relations

 dx x xb n b n b n n
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 ψ ψ δn
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which can be rewritten also in the following way:

 1
ρ

ϕ ϕ δ
st b

b n b n b n nx
dx x x

( ) ( ) ( ) =
−∞

+∞

∫ ' , '  (5.286)

 1

ρ ρ
ϕ ϕ δ

st b st b

n
n

b n b b b
x x

x x x x
( ) ( )

( ) ( ) = −( )∑
'

' '  (5.287)

This way the orthonormalization and completion of the FP solutions are 
assured, which can be developed as special non-stationary solutions:

 ρ ρ ϕ λx t x tb b n
n

n b n b, exp ,( ) = ( ) ( )∑  (5.288)

The coefficients of this expansion will be written according with the initial 
conditions and with the above relations under the form:

 ρ λ ϕ ρn n a a n a a at dx x x t= −( ) ( ) ( )
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+∫exp ,  (5.289)

Several observations are necessary. First of all, from the way of defining 
the ψ functions towards the φ, see Eqs. (5.281) and (5.282), one observes 
that for the eigen-values λ0 0=  be associated with ϕ ρ0 x xb st b( ) = ( ), 
the condition ϕ0 1+ =( )xb  has to be fulfilled. Therefore, from the relation 
(5.289) one has:

 ρ ρ0 1= ( ) =
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∫ dx x ta a a,  (5.290)

thus recovering the initial normalization condition. Then, the eigen-values 
λn are always negative. This thing can be easily proofed by successively 
writing:
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because by definition, Eqs. (5.262) and (5.266), the second moment is 
positive

D x M x t t dx x x x t x tb b a b b b a b b a a
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(5.292)

due to the fact that the conditioned probability densities and the stationary 
solutions are positive. This property of the eigen-values of the Fokker-
Planck equation gives information about the asymptotic times limit 
t → ∞( ), when all the contributions for which λn < 0 decay exponentially 

very quick, while letting only the term for which λ0 0=  as surviving. This 
way, one will be obtain:

 lim ,
t b b b st b
b

x t x x
→+∞

( ) = ( ) = ( )ρ ρ ϕ ρ0 0  (5.293)

As grounded on the above properties (5.290) for λ0 0= . This result shows 
that any temporary dependent FP solution is reduced to the stationary solu-
tion ρst bx( ) in the asymptotic limit t → ∞.

As also showed in Eq. (5.257), the transition probability or the con-
ditioned probability density ρ x t x tb b a a, ; ,( ) can be seen as a special prob-
ability density with the initial condition given by the delta Dirac function. 
In such conditions, for the conditioned probability density one can obtain 
the coefficients of the spectral expansion in Eq. (5.289):

ρ λ ϕ δ ϕ λn n a a n a a a n a n at dx x x x x t= −( ) ( ) −( ) = ( ) −( )
−∞

+∞
+ +∫exp exp' ' '

(5.294)
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from where the spectral decomposition of the conditioned probability 
density in Eq. (5.288) results as

 ρ ϕ λ ϕx t x t x t t xb b a a n
n

b n b a n a, ; , exp( ) = ( ) −( )  ( )∑ +  (5.295)

wherefrom the asymptotic times’ limit is recovered:

 lim , ; ,
t b b a a b a st b
b

x t x t x x x
→+∞

+( ) = ( ) ( ) = ( )ρ ϕ ϕ ρ0 0  (5.296)

The last result shows that the conditioned probability density is reduced 
in the limit tb → +∞ to the stationary solution, in which all the initial state 
memory x ta a,( ) is lost. Such properties should be regained also at the end 
of the analytical determinations aiming to explicit the conditioned prob-
ability density by the path integral method, as follows in the next.

5.4.3 FOKKER-PLANCK TO SCHRÖDINGER EQUATION 
TRANSFORMATION

In order to obtain the transformation of Fokker-Planck equation into 
Schrödinger equation one starts employing the autoadjoint operator intro-
duced in Eq. (5.277), which along (5.276) becomes:
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 (5.297)

Next, the diffusion factor D x Db
2( ) ( ) ≡  will be considered as a constant of 

the nonequilibrium dynamic process. With this identification in the sta-
tionary (5.269) one yields the equation:

 ∂
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x
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D

x
b

st b
b

st bρ ρ
1

 (5.298)

With this, the autoadjoint operator expression form above, Eq. (5.297), 
can be successively developed (Gardiner, 1994; Risken, 1984):
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  (5.299)
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1 2  (5.300)

The obtained expression permits the direct analogy with the Hamiltonian 
operator specific to the Schrödinger equation:

 O x D
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U x
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b b
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∂

• − ( )• ≡
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2

2
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22
 (5.301)

This correspondence stays at the basis of the transformation of the Fokker-
Planck equation into the associated Schrödinger equation. Through the 
corresponding relations (5.299) and (5.301) one has in a direct way the 
transformation relation:
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 D
m

=


2

2
 (5.302a)

Beside, under an harmonic external potential

 V x x( ) = γ 2 2/  (5.302b)

the drift factor automatically results as

 D x x V x xb b b b
1( ) ( ) = − ∂ ∂[ ] ( ) = −/ γ  (5.302c)

and the effective potential characteristic to the Fokker-Planck dynamic 
will be given by:

 U x
D

xFP b b( ) = −
1

4 2
2 2γ

γ  (5.303)

If the relation (5.303) is placed in direct correspondence with the harmonic 
potential for the associated Schrödinger equation

 U x m x CTS b b( ) = +
2

2 2ω  (5.304)

there results also the identifications:

 CT = −
γ
2

 (5.305)

 ω
γ

=
2mD

 (5.306)

with γ bearing the role of the (mesoscopic) friction coefficient.
Whit these quantities one can reveal the essential difference of the 

Fokker-Planck equation towards the Schrödinger one for the same type 
of external potential (harmonic, in here). Firstly, worth remarking the fact 
that, when it is consider eigen-value equation for the Hamiltonian operator 
specific to Schrödinger equation

 H x x E xb n b n n b
 ( ) ( ) = ( )ψ ψ  (5.307)
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and it is compared with that one in the autoadjoint operator Fokker-Planck 
(5.283), with the identification O x H xb b

 ( ) = − ( ), there will automatically 
results also the connection between the associated eigen-values:

 λn nE= −  (5.308)

This observation is fundamental, reveling the fact that the characteristic 
energies of the Fokker-Planck equation are reactive energies, and in the 
final, nonequilibrium energies. This aspect is directly correlated with 
the nonequilibrium character specific for the Fokker-Planck equation 
while modeling open systems (driven by drift diffusion and factors, sto-
chastic noise, etc.). Moreover, if the analytical solution of the eigen-values 
for the Schrödinger equation with the potential U xs b( ) is considered, the 
consecrated expression is obtained:

 E n CTn
S = +






 +ω

1
2

 (5.309)

from which one is observing how, by employing the Eqs. (5.305), (5.306) 
and (5.302a), the zero level term and the introduced constant are recipro-
cally canceling

  



ω γ γ
2 2

2
2

22
= = = −

m
m

CT  (5.310)

leading with Eq. (5.309) to the expression:

 E n nn
FP

n= = = −ω γ λ  (5.311)

This way λ0 0=  is indeed recovered yet with a fundamental different 
meaning respecting Schrödinger case for the harmonic oscillator: in the 
nonequilibrium FP modeling the zero level gives zero, since rooting in the 
dynamic action induced by diffusion and drift.

The transformation of Fokker-Planck equation into Schrödinger equa-
tion also serves in finding the FP solution for the transition probability 
density, here for the harmonic oscillator. To this aim, one firstly considers 
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the eigen-function of the Schrödinger equation obtained for the harmonic 
potential (see Volume I/Section 3.3.2 of the present five-volume work):

 ψ
ω ω

n b n n b bx C H m x m x( ) =








 −






 

exp
2

2  (5.312)

with H zn ( ) as the Hermite polynomials, and m Dω γ/ / = ( )2 , accord-
ing with the above correspondence, Eqs. (5.302) and (5.305), respectively. 
This way, the solution can be rewritten in the form:
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In order to determine the normalization constant Cn the ortho-normaliza-
tion property will be used along the Hermite functions’ property:
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This way, the ortho-normalization condition (5.284) of the eigen-function 
y n (identical for Schrödinger and Fokker-Planck equations) successively 
becomes:
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leaving for the coefficients of Eq. (5.313) with the actual form:
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while providing for the eigen functions (5.313) the expressions:
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γ γ
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In order to write the eigen-functions associated to Fokker-Planck equation 
the stationary solution for the harmonic external potential should be firstly 
evaluated: the stationary solution equation (5.298), with Eq. (5.302b), 
yields immediately:
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2  (5.318)

with the integration constant being determined from the normalization 
condition:
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thus providing the stationary solution with the form:
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From now on the eigen-function solutions of the Fokker-Planck equation 
in the LFP

  operator immediately results through the relations (5.281) and 
(5.282):
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By taking into consideration the property of the Hermite polynomials 
H0 1=( ), the identities

 ϕ0 x xb st b( ) = ( )ρ  (5.322a)
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 ϕ0 1+ ( ) =xb  (5.322b)

are naturally found. Finally, one can evaluate the conditioned probability 
density for the considered harmonic potential, by writing Eq. (5.295) in 
the form:
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By using the Mehlers formula for the Hermite polynomials, see Volume I/
Section 3.3.2 of the present five-volume set (Putz, 2016a)
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the final expression of the conditioned probability density is obtained after 
elementary calculations under the form:
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(5.325)

where:

 K x t t x t ta a b a b a1 , ; exp( ) = − −( ) γ  (5.326)

stays for the first cumulant, while the second cumulant looks like:

 K x t t D t ta a b b a2 1 2, ; exp( ) = − − −( ) { }
γ

γ  (5.327)

×
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Worth remarking the Gaussian form of the conditioned probability density 
in the evolution dynamics under the influence of the harmonic potential: 
the first cumulant exponentially decreases from the value xa, while the 
second cumulant starts its evolution from the zero value and accedes to 
a value constant in the asymptotic tb → ∞ limit. Practically, the transition 
probability as the FP solution for the external harmonic potential starts 
its evolution from a Dirac distribution at the initial moment t tb a=( ) and 
arriving, upon long times to shape as a stationary Gaussian distribution 
with characteristics depending by the nonequilibrium evolution param-
eters (γ  and D). The transcription of the Fokker-Planck equation into 
Schrödinger equation helped in finding the solution for the initial Fokker-
Planck equation. Still, there were revealed specific aspects, essentially 
different respecting those derived from the Schrödinger equation and 
allied solutions, reaffirming the idea that the Fokker-Planck equation is 
characteristic to the nonequilibrium quantum statistical evolution and it 
correspond to an mesoscopic evolution picture (by the diffusion and drift 
factors).

The external enharmonic potential case will be also the next framework 
in which, by means of the path integrals formalism, the non-stationary 
solutions of the Fokker-Planck equation will be searched for.

5.4.4 NON-EQUILIBRIUM LAGRANGIAN

Here one will proceed with passage from the Schrödinger equation frame-
work to that one characterized by (Feynman) path integrals; this, because 
the path integrals present the advantage of a treating by Feynman dia-
grams with an increase degree of intuition in treating the correlations’ and 
interactions’ dynamics. Actually, instead of solving a problem of eigen-
values and then of a spectral summation, as is the case in solving by cor-
respondence (principle) with the Schrödinger equation (see the previous 
sections), when using the path integrals the conditioned probability den-
sity is directly written by the integral evaluation:

 ρ x t x t x t x t x t L x tb b a a b b a a FP
x t x

x t x

FP

a a

b b

; ; ( ) ,( ) → ( ) = ( )
( )=

( )=

∫ D' x t t( )( ),  (5.328)
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This expression represents the third level of the path integrals representa-
tion, after the classical quantum mechanical picture (see Volume I of the 
present five-volume work)

 exp , ,i dt L x t x t t
t

t

cl

a

b



∫ ( ) ( )



















•

 (5.329)

and after the quantum statistical of Section 2.5 of the present volume

 exp , ,− ( ) ( )


















∫

•1

0



d L x xFPτ τ τ τ
β

 (5.330)

The formulation introduced by the Lagrangian (5.328) will be called as the 
Fokker-Planck picture, there where one remarks the absence of the reduced 
Plank constant , being such absence a characteristic of the Fokker-Planck 
formalism, emphasizing on the mesoscopic character as a next (statisti-
cal) level grounded on the microscopic  related world: the parametric 
correspondence between all these three levels of quantum dynamics was 
anticipated in Section 2.3.

Next, one has to specify the Lagrangian of the expression (5.328) for a 
nonequilibrium dynamics. To this aim one works out the parametric form 
(Kleinert, 2001):

L x t x t t A x t
m

d
dx

V x t B d
dx

V x tFP ( ) ( )( ) = ( ) + ( )( )







 − ( )(, , 

1
2 2

2γ
))

(5.331)

Which will be a posteriori justified as belonging to the studied Fokker-
Planck equation though determining the A and B coefficients (in this 
section) as well as by retrieving the conditioned harmonic probability den-
sity solution (already formulated by employing the Fokker-Planck with 
the Schrödinger equation correspondence, see Section 5.4.3) using this 
Lagrangian with determined coefficients (in next sub-Section).

First of all, one will consider the Fokker-Planck conditioned probabil-
ity density in the temporal coarse graining time ε = − −t tn n 1:

 x x n A x x V x
m

B V xn n FP FP
n n n

n, ; , exp
'

"ε ε
ε γ

ε−
−( ) = −

−
+

( )







 + ( )1

10
2











 (5.332)
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where for xn an intermediate value between xn−1 and xn will be implemented 
with the parametric form:

 x x x x x xn n n n n n= + −( ) = − −( ) −( )− −α α α1 11 1  (5.333)

Whit such scaling, the potential dependences will be considered them-
selves as expanded until the second order:

V x V x x x V x V x x xn n n n n n n n' ' ' "( ) = − −( ) −( )  ≅ ( ) − −( ) ( ) −( )− −1 11 1α α
(5.334)

 V x V xn n" "( ) ≅ ( )  (5.335)

By making use now of the relationship between the probability density 
and the conditioned probability density one can successively write (also 
by skipping the functions’ indices, i.e., W x t W x tn n n n1 , ,( ) = ( ), for simplic-
ity, being no reason of confusion):

W x t dx x x W x t

d x

n n n n n FP n n
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B V' xnε '

(5.336)

with the notations:

 t tn n− = −1 ε , x x xn n n− = −1 ∆  (5.337)

Next the first order in ε will be employed. However, a note is compul-
sory here: there is so clearly that ∆t ∝ ε  along the dimensionality propor-
tion ∆xn ∝ ε ; yet the last proportionality comes from the slicing of the 

term exp −











∫A dtx
t

t

a

b

 , for instance, which in arbitrary units for (e.g. fixed 
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to the unity) becomes exp{ / }−ε ε( )2∆x 2 , from where the proportionality 
∆xn ∝ ε  is immediately identified in order the exponential dimensional-
ity to be kept.

In such conditions the next expansion is provided:
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,  (5.338)

By inserting (5.338) into the equality (5.336) it becomes successively (by 
retaining only the terms until the first order expansion in ε):
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  (5.339)
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Some of the terms in Eq. (5.339) are vanishing due to the integral 
property:

 d x x A xn n n
−∞

+∞

∫ ( ) − ( )





=∆ ∆ ∆exp
ε

2 0  (5.340)

while the even terms in the powers of  ∆xn under the integrals of the 
Eq. (5.340) type also satisfy the conditions:

1 2= ( ) − ( )





= ⇒ =
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∫ d x n A x n
A

n A
n FP n FP FP∆ ∆exp
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επ
(5.341)

and respectively:

 d x n x A x
An FP n n
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=∆ ∆ ∆2 2

2
exp

ε
ε  (5.342)

where in the last relation the constant deduced in Eq. (5.341) was used. 
Finally, by considering all properties in expression (5.340)–(5.342), the 
expression (5.339) reduces to:

 

W x t W x t A
V x

m
W x t

A
A V x

m

n n n n
n

n n

n

, ,
'

,

"

( ) = ( ) −
( ) ( )

+
−( ) ( )

ε
γ

ε α
γ

2

2 2

2
2 1

WW x t

B V x W x t
A

A
m

V x W x t

A
m

V

n n

n n n n n n

,

" , ' ,

( )

+ ( ) ( ) + ( ) ( )

+

ε
ε

γ

γ

2
2

2

2 2
2

2

''
,

, ,

x
A

W x t
x

W x t
x

W x t
t

n
n n

n

n n

n

n n

n

( ) ∂ ( )
∂

+
∂ ( )

∂
−

∂ ( )
∂

ε

ε
ε

2

1
2 2

2

2A
 (5.343)

By making all possible groupings the simplified relation has the form:
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∂
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This equation has explicitly the Fokker-Planck equation form (5.239), at 
the probability density level (with D x Dn

2( ) ( ) ≡ ):
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By making the correspondences and one-to-ne identifications for Eqs. 
(5.344) and (5.345) the next system is formed:
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 (5.346)

with the solution:
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m
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1
4
α
γ

 (5.347)

Next the case in which α =1 2/  (midpoint calculation) will be considered, 
for which the nonequilibrium Euclidian Lagrangian (5.331) will have the 
working form:

L x t x t t
D

x t
m

V x t
m

V x tFP ( ) ( )( ) = ( ) + ( )( )







 − ( )( ), , ' " 

1
4

1
2

1
2

γ γ
(5.348)
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Until now we actually proofed the fact that the Lagrangian (5.348) 
corresponds to a modeling (mesoscopic) dynamics which is described by 
the Fokker-Planck equation. Next, one will consider this nonequilibrium 
form of the Euclidian Lagrangian, to be characteristic to the effective elec-
tronic evolution, specific to the mesoscopic characterization.

5.4.5 THE NON-EQUILIBRIUM HARMONIC SOLUTION

There is very instructive to find of the nonequilibrium harmonic solu-
tion by the path integrals method as starting from the analyzed non-
equilibrium Lagrangian (of the preceding Section): firstly because it 
regain the harmonic solution previously found by transforming the 
Fokker-Planck equation into the associate Schrödinger equation, being 
this way proved the reliability of the used Lagrangian (5.348) as well 
as the consistency of the path integrals method in solving the Fokker-
Planck problem. The harmonic solution will be used in the following 
step, for evaluating the nonequilibrium solution in case of a harmonic 
generalized potential.

As projected, one is starting from the conditioned probability den-
sity expression in the path integral form (5.328) with (5.348) (Kleinert, 
2001):
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(5.349)

In order to consider also the spectral translation of the Fokker-P eigen-
values respecting the Schrödinger ones, the previous path integral will be 
reconsidered by introducing the transformation of the potential:

 V x m U x( ) → ( )γ  (5.350)

This way, the conditioned probability density becomes:
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(5.351)

Starting from this form one will further run the Onsanger-Matchlup har-
monic potential (equivalent with the Brownian movement) form:

 U x x( ) =
γ
2

2  (5.352)

by whom the path integral, (5.351) casts as:

(5.353)

With the quantum statistics to Fokker-Planck correspondences (as of 
Section 2.3):

 
γ ω↔

↔
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2D
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 (5.354a)

×

×
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then, the path integral (5.353) is transferred into harmonic quantum 
mechanical path integral problem. Further consideration of the correspon-
dence (5.354a) along those of the Section 2.3 this time in the harmonical 
motion path integral result (see Volume I/Section 4.3.3 of the present five-
volume work), the analytical expression is obtained:

x t x t t t
D

x xb b a a FP
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b a b a, ; , exp exp( ) = −( )
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4D t tb asinh γ

(5.355)

With the algebraic elementary transformations performed (i.e., the hyper-
bolic functions became exponential functions, etc. as in Section 2.3 antici-
pated, see also Volume I/Section 4.3.3 of the present five-volume work) 
the path integrals’ harmonic solution (5.355) will take the actual form:
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γexp
 (5.356)

equivalently with (5.325) – as found by the Fokker-Planck to Schrödinger 
equation transforming (having identified the respective cumulants). This 
way, the self-consistence of the path integrals formalism with Schrödinger 
equation’s solution was once more revealed.

Up to now, in Chapter 2 of the present Volume the quantum mechanical 
(largely exposed in the Volume I/Section 4.2 (Putz, 2016a) of the present 
five-volume set) to quantum transcription QM QS→  was implemented, 
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while the analytical transition to Fokker-Planck (stochastic) approach was 
only anticipated. Instead, in the present Section explicit Fokker-Planck 
picture was considered, by which the Fokker-Planck equation must be sat-
isfied by any (nonequilibrium) solution calculated by the path integrals. 
The two sets of identifications (QM-to-QS and QS-to-FP) are also unitary 
in the light of transformation

 m D= ( )γ ω / 2  (5.354b)

Accordingly, the conditional probability density in case of harmonic 
potential x t x tb b a a FP

x, ; ,( )
2

 has the analytically form given in the Eq. (5.356) 
and satisfy the Fokker-Planck equation under the form:
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(5.357)

This fruitful analysis direction can be continued also for evaluating the 
Fokker-Planck solution in case of generalized harmonic potential.

5.4.6 THE NON-EQUILIBRIUM GENERALIZED ANHARMONIC 
SOLUTION

One considers the generalized harmonic potential

 U x x g x( ) = +γ
2 4

2 4
 (5.358)

for which the transition probability will be calculated by neglecting all the 
contribution of type g n, n ≥ 2. This way, the path integral (5.328) succes-
sively becomes:
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(5.359)

In order to evaluate the remaining integrals the correlation functions are 
necessary, in relation with the statistical Wick rules. Precisely, having in 
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mind the general connection between the action and the Lagrangian of 
the system, see Volume I/Section 2.3 of the present five-volume set (Putz, 
2016a),

 S x t x t t L x t x t tFP
x

FP
x

t

t

a

b
2 2( ) ( )  = ( ) ( ) ∫, , , ,   (5.360)

the expected value of the paths x t( ) will be successively written as:

(5.361)

from where the general multiplied form may be advanced:
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(5.362)

The density matrix as a functional of the introduced interaction current j 
can be developed under the form (Pelster & Kleinert, 1996; Kleinert et al., 
1999):
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(5.363)

where the classical paths and correlation propagators (see Section 3.3) are 
now specialized as (corresponding with the prescriptions of Section 2.3):
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with the Θ( )t t1 2−  the Heaviside function.
Whit these (Feynman) rules the connected expressions are calculated 

following the (the modified Wick rules) prescriptions of Section 3.3.2, 
here particularized as:

 x t x tcl( ) = ( )  (5.366)

 x t x t x t x t G t tcl cl1 2 1 2 1 2( ) ( ) = ( ) ( ) + ( ),  (5.367)
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(5.369)

Next the interaction contribution will be considered. Note that the above 
Wick rules take into account all the classical uni-solutions combinations as 
well as all classical bi-solutions combinations and of the interaction propa-
gators, as necessary to satisfy the current expanding order of interaction. 
However, in the present calculation, there appears the simplified situation 
of evaluating of the correlations functions at identical times, thus reducing 
the previous expressions (5.367) and (5.369) to these ones:

 
 (5.370)

 

 (5.371)

With expressions (5.370) and (5.371) in (5.359), the conditioned prob-
ability density for a harmonic potential can be analytically formulated, 
by turning the hyperbolic functions into decreasing exponentials, with 
results:
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with the calculated coefficients of expansion (Kleinert-Pelster-Putz, 2002):
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(5.373)

and where the short notation τ γ= −( )t tb a  was introduced, allowing for 
the graphical representation as given in the Figure 5.3.

{ {
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Going to cross-check the solution (5.372), it should satisfy the 
Fokker-Planck (5.250); by performing the required replacement one 
firstly gets:

FIGURE 5.3 Temporal behavior of the coefficients (5.373) for the Fokker-Planck 
enharmonic conditioned probability density (5.372) for unitary drift and diffusion constants 
γ = =D 1; after Voth et al. (1989) and Kleinert-Pelster-Putz (2002).
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from which only the first order g will be retained:
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Now, by considering the Fokker-Planck equation for the harmonic 
potential (5.357) in Eq. (5.375), one notes that the terms without the 
coupling constant g will be reduced, and the remaining equation will 
be shaped as:
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This equation is indeed satisfied by the analytically form:
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in which one immediately identifies the components involved in the 
Fokker-Planck equation, by comparing it with the expression (5.372). 
From the general analytical form (5.372) there is also immediately deduced 
the solution from asymptotic time evolution, i.e., corresponding with the 
stationary solution for the harmonic potential that is:
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Worth to observe that by recovering the harmonic case g →( )0  there 
is automatically regain also the harmonic stationary solution (5.319). 
Besides, the general stationary solution can be cross-checked by con-
sidering the stationary condition in Fokker-Planck equation (5.268) 
and (5.269):
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under the Dirichlet (spatially limited) conditions:
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From (5.379) the general solution springs as satisfying the normalization 
condition:
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with K zν [ ] being the Bessel modified function of the second rank. 
Nevertheless, this solution has to be also obtained as a perturbation of the 
g → 0 case; therefore, the Bessel function from denominator (5.381) will 
be expanded in asymptotic manner, by the tabulated formula:
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where Γ x( ) stays for the Gamma Euler function and θ3 for the elliptic 
Theta function of the 3rd order. By keeping only the first terms for the 
Bessel function form in Eq. (5.381) it looks like
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with which, by considering the Gamma function property, see Appendix 
A.2 of the Volume I of the present five volume work (Putz, 2016a)

 Γ Γq q q+( ) = ( )1  (5.382b)

the solution (5.381) became finally identically with the one from (5.378).
Remarkably, as found in the previous sections, by the present approach 

and cross-checking we arrive to reconfirm the property by which in the 
stationary solution all the initial event memory x ta a,( ) is lost.

The identity verification between the asymptotical time limit abstracted 
from the general analytical solution (5.372) with that one derived from 
the asymptotical stationary solution (5.381) with (5.383), along with the 
fact that the general solution (5.377) satisfies the Fokker-Planck (5.376), 
brings sufficient arguments for adopting the present solution as a meso-
scopic solution for the nonequilibrium dynamics in the first order coupling 
(with environment), modeling the nonequilibrium electronic evolution 
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(aka reactivity), as marked by the influence of the generalized enharmonic 
potential (compatible with atoms-in-molecules description and of chemi-
cal bonding in general).

5.5 ELECTRONIC LOCALIZATION FUNCTIONS (ELF) BY 
MARKOVIAN PATH INTEGRAL

5.5.1 THOM’S CATASTROPHE CONCEPTS FOR CHEMICAL 
BONDING

The Thom’s catastrophe theory (Thom, 1973) basically describes how, 
for a given system, a continuous action on the control space (Ck), 
parameterized by ck’s, provides a suddenly change on its behavior space 
(Im), described by variables xm’s, through the stable singularities of the 
smooth map

 η c x C Ik m
k m, :( ) × → ℜ  (5.384)

being η c xk m,( ) called the generic potential of the system. Therefore, 
catastrophes are given by the set of critical points c xk m,( ) for which the 
field gradient of the generic potential vanishes

 M c x C I c xk m
k m

k m
x k mm

× = ( )∈ × ∇ ( ) ={ }, ,η 0  (5.385)

or, more rigorously: a catastrophe is a singularity of the map Mk×m → Ck.
Next, depending on the number of parameters of space Ck (named also 

as the co-dimension, k) and of the number of variables of space Im (named 
also as the co-rank, m), René Thom had classified the generic potentials 
(or maps) given by Eq. (5.384) as seven unfold elementary (in the sense 
of universally) catastrophes, i.e., providing the many-variable (with the 
co-rank up to two) – many-parametrical (with the co-dimension up to four) 
polynomials, listed in the Table 5.1. Going to the higher derivatives of the 
generic potential (the fields), it will be said that the control parameter ck

* 
for which the Laplacian of the generic potential vanishes

 ∆ x k mc xη * ,( ) = 0  (5.386)
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gives the bifurcation point. Consequently, the set of control parameters c# 

for which the Laplacian of a critical point is non-zero defines the domain 
of stability of the critical point. There is clear now that the small perturba-
tions of η c xk m

* ,( ) bring the system from a domain of stability to another; 
otherwise, the system is located within a domain of structural stability.

Remarkably, the above described cases correspond to the equilibrium 
limit of a dynamical (non-equilibrium) evolution for an open system

 F c t c x
c x

tk k m
k m; ; ; ;
;

,...η
η( ) ∂ ( )

∂








 = 0  (5.387)

where the behavior space is further parameterized by the temporal paths 
x c tm k ,( ). The connection with equilibrium is recovered through the sta-
tionary time regime imposed on the critical points. This way, the set of 
points giving a critical point in the stationary t → +∞ regime (the so called 
ω-limit) corresponds to an attractor, and forms its basin, whereas the sta-
tionary regime t → −∞ (the so called α-limit) describes a repellor.

These catastrophe concepts have the merit to describe the evolution of 
local properties of (in principle) any natural system. In this framework, 
the chemical bonds can be seen as the equilibrium part of the evolutionary 
binding processes. Therefore, to describe the bonds and binding, a suitable 
generic potential η x( ) has to be consider. In topological studies of elec-
tron localization across a chemical reaction modeled by the catastrophe 
approach the variable x can stay also as the reaction coordinate.

TABLE 5.1 Thom’s Classification for Elementary Catastrophes, after Thom (1973)

Name Co-dimension Co-rank Universal unfolding
Fold 1 1 x ux3 +

Cusp 2 1 x ux vx4 2+ +

Swallow tail 3 1 x ux vx wx5 3 2+ + +

Hyperbolic umbilic 3 2 x y uxy vx wy3 3+ + + +

Elliptic umbilic 3 2 x xy u x y vx wy3 2 2 2− + +( ) + +

Butterfly 4 1 x ux vx wx tx6 4 3 2+ + + +

Parabolic umbilic 4 2 x y y ux vy wx ty2 4 2 2+ + + + +
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With the aim of properly choosing the function η(x), with x the space-
spin coordinate, the electronic wave function Ψ, as provided by Schrödinger 
or related Hartree-Fock formalisms, can be an option, but suffers from 
the lack in the real space significance. Next, a better choice regards the 
electronic density ρ(x) as the real descriptor of the topological electronic 
distribution in space and for identifying the bonds as well. In this respect, 
the gradient equation of the electronic density, ∇ρ = 0, provides the critical 
points whereas the Laplacian equation, ∇ρ = 0, indicates the bifurcations 
and stability zones, respectively. This picture was intensively used by the 
Bader’s theory of atoms in molecules (Bader, 1990), with partially success. 
An alternative electronic topological approach was performed by Mezey 
by considering the changes in shape of the bonding isosurfaces (Mezey, 
1987), but in a form that does not allow the description of bonding in terms 
of Laplacian. Worth noting here that the Laplacian plays a crucial role in 
topological bond description, being associated with the quantum mechani-
cal transcription of the kinetic electronic energy, T m� �= −( )∇2 22/ , being 
at its turn related with the minus of total energy of the electronic system, 
E = –T, through the virial theorem at equilibrium (Preuss, 1969).

In fact, this feature of Laplacian was extensively employed by Bader’s 
atoms in molecules theory at the purely electronic density level in order 
to quantum rationalize the previous Gillespie’s geometrical VSEPR 
(Valence Shell Electron Pair Repulsion) description of the molecular 
bonds (Gillespie, 1972; Bader et al., 1988).

A more elaborated choice in generic potential was proposed by Becke 
and Edgecombe through introducing the electron localized function 
(ELF), representing a density combination rather than the electronic den-
sity solely. Their approach (abbreviated as “BE”) prescribes η(x) with the 
form (Becke & Edgecombe, 1990)

 η BE
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and:

 D x xh ( ) = ( ) ( )  = ( )3
10

3 2 8712 2 3 5 3 5 3π ρ ρ
/ / /.r  (5.390)

as a combination between the kinetic electronic density terms from the 
Hartree-Fock (or Kohn-Sham) orbitals φi , the Weizsäcker gradient correc-
tion, and the homogeneous (abbreviated by “h”) Thomas-Fermi descrip-
tions, respectively (Silvi & Savin, 1994). In Eq. (5.388) Dh(x) accounts for 
the excess of local kinetic energy density due to Pauli repulsion, whereas 
Dh(x) plays the role of the “renormalization” factor. However, this ELF 
function behaves like a density by mapping its values onto the realm [0, 1], 
where 1 corresponds to the perfect electronic localization, being therefore 
suitable for the gradient and Laplacian performances. The recent topologi-
cal studies have revealed the effectiveness of the above ηBE(x) function in 
describing both the electronic localization in bonding as well for modeling 
the chemical reaction pathways (Savin et al., 1992). However, despite of 
ηBE(x) efficiency in bonding characterization, a series of aspects regarding 
its appearance in the context of the universal unfolding of the catastrophes 
(see Table 5.1) as well as within the time-dependent and the stationary 
ω-limit have remained unexplored. The present Markovian description of 
the enharmonic potentials with the help of Fokker-Planck equation and of 
its path integral solution aims filling this gap – as exposed next.

5.5.2 FOKKER-PLANCK MODELING OF THE ELECTRONIC 
LOCALIZATION

In order to better understand the actual ELF approach, it is worth remind-
ing that the origin of the above ηBE(x) relies in evaluation of the condi-
tioned pair probability with which one electron is located at point xb with 
the spin σ once the reference electron is located at point xa with the same 
(parallel) spin σ (Becke, 1988)

 P x x A xb a b
σσ

σσ;( ) ≅ 2  (5.391)

being the coefficient Aσσ identified with the function D(x) in Equation 
(5.389) within the so called “hole” function approach, whereas in the 
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present treatment has to be re-determined. Nevertheless, ηBE ELF empha-
sizes on the key role of the conditioned probability density – to be here 
considerate alternative Markovian description of natural processes.

As previously shown, the Markovian treatment of the conditioned prob-
ability density given by the general Fokker-Planck path integral (5.349) 
with correspondences of Table 5.1 in atomic units  = =( )m 1
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(5.392)

with K(x) the drift function

 K x t U xx( )( ) = −∂ ( )  (5.393)

see its definition from (5.350) and the transformation (5.240). Within the 
anharmonic potential case it features the non-linear shape

 K x h x gx( ) = − − 3  (5.394)

assuring the connection with the electronic localization by the homoge-
neous and inhomogeneous (or gradient) specializations

 h D xh a→ ( )  (5.395)

 g D xa→ ( )  (5.396)

with the help of electronic functions (5.390) and (5.389), respectively. 
Yet, the correspondences (5.395) and (5.396) are motivated as follows. 
If one considers the working effective potential (5.358) as the bilocal 
dependency

 U x x h x x g x x
a b a

b
a

b,( ) = ( ) + ( )
2 4

2 4
 (5.397)
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it models the field produced by the reference electron located at xa over 
its spherical neighborhood which contains the coupled electron at the dis-
tance (or radius) xb, thus being characterized by the density (radial) equa-
tion of Poisson type

 ρ x U x x h x g x xb x a b a a bb
( ) = ∇ ( ) = ( ) + ( )2 23,  (5.398)

while clearly revealing the role of the homogeneous and gradient related 
terms as being the friction γ and perturbation factor g in Eq. (5.397), 
respectively. Note that the form of the potential (5.397) assumes one of 
the most general pictures of bonding fluctuations with the enharmonic tra-
jectories of the second electron respecting the referential one.

More, within the potential form (5.397) the xa and xb coordinates are 
separated and coupled, allowing the averages operations being performed 
firstly on the coordinates of the coupled xb electron, while replacing in the 
final result the referential electronic xa influences. However, the present 
Markovian ELF picture is summarized by the following analytical steps 
(Putz, 2005):

 (i) Solving the path integral of Equation (5.392) for the non-linear 
potential (5.397) the time-dependent (spin) conditioned probabil-
ity x t x tb b a a FP

x, ; ,( )
4

 is provided;
 (ii) The w-limit tb → ∞( ) is performed on the (i) result leaving with 

the stationary (spin) conditioned probability

 lim , ; , , ; ,
( ) /t t b b a a FP

x
b b a a FP

x

b a

x t x t x t x t
− →+∞

( ) = ( )
4 4

ω
 (5.399)

 (iii) The result from (ii) is employed upon the specific integration rule 
(Parr & Yang, 1989)

 x t x t dxb b a a FP

x
b, ; ,

/( ) = −
−∞

+∞

∫ ω

4

1 (5.400)

providing the “renormalization” of the stationary spin condi-
tioned probability (5.399) into the so called exchange (parallel 
spins) conditional probability: x t x tb b a a FP

x, ; ,
/

/( ) ω

σσ4

. Note that this 
“unusual” normalization condition makes in fact the proper link 
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with the Fermi hole, in close relation with Pauli exchange repul-
sion, telling that the aa and bb  exchanged holes contain exactly 
minus one electron (Becke, 1988).

 (iv) Identification of the actual exchange probability x t x tb b a a FP

x, ; ,
/

/( ) ω

σσ4

 
with the previous general one given by Eq. (5.391) delivers the 
polynomial equations that can be treated either as the gradi-
ent or Laplacian equations (5.385) and (5.386), respectively, 
towards identifying one of the universal unfolded catastrophes 
given in Table 5.1. In any case, either as a gradient or Laplacian 
equation, the companion equation results immediately assuring 
therefore the necessary number of equations from which the 
critical solution xb as well as the bifurcation parameter Aσσ  are 
evaluated in terms of g and h.

 (v) Finally, throughout the correspondences (5.395) and (5.396) the 
Markovian ELF is found.

The next section is dedicated to applying the Markovian ELF algo-
rithm for the enharmonic potential of (chemical) binding.

5.5.3 MARKOVIAN SHAPE FOR ELECTRONIC LOCALIZATION 
FUNCTIONS

The first step in the above Markovian-ELF algorithm, i.e., the analyti-
cal time-dependent conditional probability x t x tb b a a FP

x, ; ,( )
4

 for the path-
integral representation (5.392) with potential (5.397) is furnished by the 
expression (5.378). Then, applying the w-limit on the result (5.378) one 
gets the stationary solution (5.381), see also the Figure 5.3 for the asymp-
totic behavior for the coefficients (5.373), as representing the stationary 
conditioned Markovian enharmonic probability

 x t x t h g
h

hx g xb b a a FP

x
b b, ; , exp

/( ) = − −



ω π

4 3
8 22

2 4  (5.401)

where the second correspondence of Eq. (5.354a) was systematically con-
sidered in the solution (5.381) within the above specified atomic units. 
However, since expression (5.401) already fulfills the canonical integration
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b, ; ,  (5.402)

there is immediate that the satisfaction of “exchange hole” renormalization 
condition given by Eq. (5.400) requires only the changing of sign in right 
hand side of Equation (5.401); yet, searching for the specific catastrophe 
polynomials, one will consider the polynomial expansion of exponential 
of Eq. (5.401) up to the accustomed first order in the coupling g, so that 
the exchange conditional probability is written as
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Next, by identifying the expression (5.403) with the conditional pair prob-
ability (5.391), i.e., by putting in act the step (iv) in above formulated 
Markovian algorithm, it is straightforward to arrive at the polynomial 
equation
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 − =σσ  (5.404)

At this point, as was previously anticipated, Eq. (5.404) can be seen in 
two ways. Within the first case, abbreviated as “M1: Markovian one,” 
Eq. (5.404) may represent the Laplacian field of Eq. (5.386) that provides 
the unfolded function
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(5.405)

which corresponds to the butterfly elementary catastrophe (with v t= = 0) 
in Table 5.1. Instead, when Eq. (5.404) is seen as the gradient field equa-
tion of Equation (5.385) it produces the second case, the “M2: Markovian 
two,” with the unfolded function
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associated with the swallow tail elementary catastrophe (with v = 0) in 
Table 5.1. Up to now, it was revealed that the Markovian path-integral 
representation of the conditioned probability density within the non-
linear drift expansion arrives to recover the unfolded elementary catas-
trophes, as classified by the Thom’s theory. These catastrophe forms, 
namely Eqs.  (5.405) and (5.406), can be further transformed to shape the 
Markovian ELFs by eliminating, in each case, the A xbσσ ,( ) dependence, in 
order to complete the (iv) step above. To do this, in each M1 and M2 cases, 
the Eq. (5.404) is supplemented by its topological companion (Laplacian 
to gradient equation and vice-versa). For instance, when Eq. (5.404) repre-
sents, in the M1 case, the Laplacian equation ∆η M 1 0=  then, by its integra-
tion the gradient equation ∇ =η M 1 0 is also furnished
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Likewise, in the M2 case, when Eq. (5.404) represents the gradient equa-
tion ∇ =η M 2 0 the correspondent Laplacian equation ∆η M 2 0=  is also 
provided through its derivation
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In both cases, the second equation will be solved first, in terms of bifurca-
tion parameter Aσσ , then the result is plugged in the complement equation 
and the critical point xb is reached out to be in each of M1 & M2 cases, 
respectively as
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However, in order to form the real solutions of Equations (5.409) and 
(5.410), a suitable replacement has to be performed, namely

 − → − >g g g h*( , ) 0  (5.411)

such that the new parameter g* to be strictly positive, while being a trans-
formation of the negative of g, along the general homogeneous h param-
eter dependence.

Finally, with Eqs. (5.409) and (5.410) back in the founded bifurca-
tion parameters Aσσ , and further into the unfolded catastrophe functions 
(5.405) and (5.406), the corresponding general Markovian ELF cases are 
displayed as (Putz, 2005):

 η M
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x
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/  (5.412)
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Yet, while featuring the normalization between 0 and 1, in terms of g* of 
Eq. (5.411), by close inspection of the Becke-Edgecombe (5.388) as com-
paring with the Markovian (5.412) and (5.413) ELFs, one may conclude 
that a general shape for a reliable ELF should look like (Putz, 2005)
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That is, displaying an inverse function of a gradient to homogeneous ratio 
electronic contributions (5.389) and (5.390), respectively.
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5.5.4 MARKOVIAN SPECIALIZATION FOR ELECTRONIC 
LOCALIZATION FUNCTIONS

For practical purposes the general Markovian ELFs given by Eqs. (5.412) 
and (5.413) are to be further specialized, according with the transformation 
prescribed by Eq. (5.414), in various ways. Yet, aiming to make a closer 
contact with previous Becke-Edgecombe ELF formulation of Eq. (5.388), 
a suitable choice would be
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that provides the first set of Markovian ELF formulations
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Nevertheless, the ELF cases given by Eqs. (5.416) and (5.417) correct, 
in a Markovian framework, the previously purely hole-pair probability 
approach. The question is to decide which of the above Markovian ELF’ 
cases are more “corrective” respecting the Becke-Edgecombe one.

For better visualizing the answer the Figure 5.4 shows the BE-M1 
and BE-M2 differences on the relevant homogenous (h parameter) ver-
sus inhomogeneous (g parameter) contributions to electronic localiza-
tion. The analysis of Figure 5.4 clearly reveals that for a moderate 
inhomogeneous contribution to the electronic gas the first Markovian 
ELF of Equation (5.416) corrects the Becke-Edgecombe localiza-
tion function up to 15%, whereas, in the same conditions, the second 
Markovian ELF of Eq. (5.417) improves only up to 8% the Becke-
Edgecombe ELF treatment. Therefore, we can conclude that the most 
corrective Markovian ELF to the Becke-Edgecombe approach stays 
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the first dependence of Eq. (5.416); this one can be further tested for 
prediction of the electronic localization in atoms and of bindings in 
molecules.

Next, we suggest another choice of the transformations (5.411)–
(5.414), while maintaining the generalization of the Becke-Edgecombe 
ELF picture – now by the exponential form
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with the help of which, the ELF cases of Eqs. (5.412) and (5.413) are spe-
cialized towards the new ones
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They produce the corrections up to 30% and 20% for the Becke-
Edgecombe ELF approach, respectively, in the moderate inhomogeneous 
electronic behavior – as the Figure 5.5 reveals. Again, the Markovian ELF 

FIGURE 5.4 The differences in electron localization functions (ELFs) between the 
Becke-Edgecombe (BE) and Markovian (M1) and (M2) formulations of Eqs. (5.388), 
(5.416), and (5.417), in left and right, respectively, versus the homogeneous (h-parameter) 
and inhomogeneous (g-parameter) influences on electronic distribution (Putz, 2009).
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corresponding to the first case, Eq. (5.419), is the most corrective respect-
ing the Becke-Edgecombe treatment.

The last considered ELF particularization eventually involves the 
hyperbolic trigonometric function with the form:
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producing the Markovian ELF M1++, and ELF2++ formulations, respec-
tively, as:
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Now, the differences to localization introduced by these Markovian ELFs 
as referring to the Becke-Edgecombe formulation are analyzed through 
the representations given in Figure 5.6; the analysis sharply indicates 
that the Markovian ELF++ approaches depart between 10–20% from the 
Becke-Edgecombe ELF, providing an intermediary situation between 
Markovian ELF (8–15%) and Markovian ELF+ (20–30%) predicted by 

FIGURE 5.5 The same kid of representation as in Figure 5.4, yet here for marking the 
Markovian (M1+) and (M2+) behaviors of Eqs. (5.419) and (5.420), in left and right, 
respectively (Putz, 2009).
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Eqs. (5.416)–(5.417) and (5.419)–(5.420), with the representations of the 
Figures 3.4 and 3.5, respectively.

Overall, judging by both the analytical complexity and meaningful 
physical background, grounded on the Fokker-Planck approach of the non-
equilibrium towards equilibrium systems, we propose that the Markovian 
ELF1+ of Eq. (5.419) to be adopted as the electronic localization function 
(ELF) for the practical topological characterization of the atomic shells 
and the molecular bonds (Frisch & Wasserman, 1961; Fuller, 1971; Crick, 
1976; Hänggi et al., 1990; Weiss, 1993).

The combined path integral with the non-linear and electronic density 
aspects fully qualify our analytical results as a reliable framework within 
which the electronic localization targeting the bonding evolution theory to 
be further developed.

5.5.5 ELECTRONIC LOCALIZATION IN ATOM AND IN 
BONDING ATOMS

The definitions that are currently used in the classification of chemical 
bonds are often imprecise, as they are derived from approximate theories. 
Based on the topological analysis local, quantum-mechanical functions 
related to the Pauli Exclusion Principle may be formulated as “localization 
attractors” of bonding, non-bonding, and core types. Bonding attractors 
lie between nuclei core attractors and characterize shared electron interac-
tions. The spatial arrangement of bond attractors allows for an absolute 

FIGURE 5.6 The same kid of representation as in Figure 5.4, yet here for marking the 
Markovian (M1++) and (M2++) behaviors of Eqs. (5.422) and (5.423), in left and right, 
respectively (Putz, 2009).
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classification of ionic versus covalent bond to be derived from electronic 
density combined functions (Cioslowski, 1990).

Most modern classifications of the chemical bond are based on 
Lewis’ theory and rely on molecular-orbital and valence-bond theories 
with schemes involving linear combination of atomic orbitals (LCAO). 
However, electron density alone does not easily reveal the consequences 
of the Pauli Exclusion Principle on bonding nature. While VSEPR theory 
indicates that the Pauli principle is important for understanding chemical 
structures, it has been reformulated in terms of maxima of electronic den-
sity’s Laplacian −∇ ( )2ρ r  (Bader, 1990). Next, the exchange-correlation 
density functional concept was employed to achieve the coordinate-space 
dynamical correlation in an inhomogeneous electron gas. This way the 
exchange-correlation energy (5.224) further re-expresses like (Becke, 
1988; Becke & Edgecombe, 1990)
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by accounting for the four a-spin types of interactions through the “hole” 
functions (Levy, 1991; Liu et al., 1999)
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where P2 1 2r r,( ) stands for the two-body or pair probability density or cor-
relation probability of the arbitrary electrons “1 and 2,” defined in terms of 
the N -body wave function Ψ as follows (Parr & Yang, 1989):

P N N d dN N2 1 2 1 2 3 1 2 3 31r r r r r r r r r r r, , , , , , , , ,( ) = −( ) ( ) ( )∗∫∫∫ � … … …Ψ Ψ rrN

(5.426)

Within the DFT the electrons of a pair of electrons or a bond can be 
considered as belonging to an inhomogeneous continuum gas. In analyti-
cal terms this was translated as the ELF (5.233) index as combining the 
homogeneous and inhomogeneous behaviors of a many-electronic-nuclei 
system.
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Nevertheless, as was shown in previous sections, the Markovian 
analytical shape of an ELF has the general qualitative form of Eq. (5.414) 
with the limiting constrains

 lim
,

,
ELF =

∇ ( ) >> ( )
∇ ( ) << ( )







0

1

ρ ρ

ρ ρ

r r

r r
 (5.427)

assuring the fulfillment of the Heisenberg and Pauli principles. To clarify 
this (Putz, 2005), we make recourse to the Heisenberg principle, com-
prised in ELF. When density gradient dominates, ∇ >>ρ ρ  then g h>>  in 
(5.414), and f ∞( ) should accounted for the infinite error in assigning of 
momentum, therefore indicating a precisely spatial localization of elec-
trons; thus f ∞( ) = ∞ and ELF → 0. In such, the meaning of ELF is asso-
ciated with the error in spatial localization of electrons, being zero when 
the electrons are precisely located. On the contrary, when ρ ρ>> ∇  then 
h g>>  in Eq. (5.414), and the resulting f 0( ) indicates the minimum error 
in defining of momentum and should provide the maximum uncertain of 
spatial distribution; in such f 0 1( ) =  and ELF →1, where 1 stands here for 
100% of coordinate localization error.

In this context, when the inverse of difference in local kinetic terms is 
involved, the ELF is interpreted as the error in localization of electrons 
within traps rather than where they have peaks of spatial density, as is fre-
quently misinterpreted in literature (Santos et al., 2000; Scemama et al., 
2004; Soncini & Lazzeretti, 2003; Silvi, 2003), albeit recent extensions 
of ELF have used the correlated (HF) wave functions, through the condi-
tional pair probability, however not using the “kinetic energy approach” 
(Matito et al., 2006; Kohout et al., 2004; Jensen, 2005).

Among various classes of Markovian ELFs the most representative and 
efficient one was in last section proposed as having the form of eq. (5.419), 
with the components of Eqs. (5.389) and (5.390), being responsible for the 
gradient (g) and the homogenous (h) density distributions, respectively. 
In this frame, the ELF information prescribe that as it has values closer to 
zero as the better electronic localization is providing, according with the 
limits (5.427).

Establishing a proper chemical quantum index for atomic and inter-atomic 
shells was always a challenge because the limits of, let’s say, radial density 
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distribution r r2r( ) to closely follow the valence shells of heavier atoms. 
In this concern, as already becoming a tradition in the literature (Becke & 
Edgecombe, 1990; Scemama et al., 2004; Silvi, 2003), a suitable basic test 
of ELF will be the Ne atom system due to its property to have both quan-
tum shells completely filled with electrons. The present analysis employs, for 
orbital implementation, different theoretical levels of SCF method, namely 
the HF orbitals (Clementi & Roetti, 1974):

ϕ1
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HF r rr e e e( ) = + +− − −. . .. . . 99242
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as well the simplified solutions of the SCF(Gombás & Szondy, 1970), 
both in the first approximation, providing the SCF1 spatial orbitals inde-
pendently of the angular quantum number l:

 ϕK
SCF rr e r1 9 87353 397( ) = −. .  (5.431)

 ϕL
SCF rr e r1 2 006 3 25 89511( ) = −. . /  (5.432)

and in the second approximation, releasing with the SCF2 split up orbitals 
according to l for a definite value of principal quantum number n:

 ϕ1
2 9 87353 397s

SCF rr e r( ) = −. .  (5.433)

 ϕ2
2 9 87 2 006 3 2307 024 2 31275s

SCF r rr e r e r( ) = − +− −. .. . /  (5.434)

 ϕ2
2 2 006 3 25 89511p

SCF rr e r( ) = −. . /  (5.435)
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Note that the spatial orbitals of neon, Eqs. (5.428)–(5.435), are indi-
vidually radial normalized to one such that the resulting radial density 
function,

 D r r r q r rnl nl
nl

( ) = = ( )∑2 2
ρ( ) ϕ  (5.436)

with qnl the number of equivalent electrons in a subshell (nl), to fix by 
radial integration the total number of 10 electrons of the Ne structure, in 
each above scheme of computation.

The resulting radial density function as well the BE and actual 
Markovian ELFs are depicted in the Figure 5.7. (a)–(d) for all above con-
sidered levels of orbital structure of Ne. First of all, for all ELFs a clear 
maximum and minimum corresponding to regions within and between 
shells are remarked, respectively.

Nevertheless, in the spirit of interpretation of ELF as the error in elec-
tron localization, see the previous discussion of the (5.427) limits, for a 
better localized (or trapped) region of the electrons a lower ELF value has 
to be provided. In this respect, is evident that all the actual Markovian 
ELFs given by Eqs. (5.416), (5.417), (5.419), (5.420), (5.422), and (5.423) 
are more reliable localization indices than that of Becke-Edgecombe 
shaped as (5.388).

FIGURE 5.7 (a) The comparative Ne radial density structure given by Eq. (5.436) 
and the Becke-Edgecombe (BE) electron localization function (ELF) given in (5.388) 
through different levels of self consistent field (SCF) methods: Hartree-Fock (HF) set 
(5.428)–(5.430) ( ), simplified SCF1 as the first orbital approximation set (5.431), 
(5.432), independently of angular number (----), and simplified SCF2 as the second orbital 
approximation set (5.433)–(5.435), dependently on the angular number (....); after Putz 
(2005).
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FIGURE 5.7 (b) The comparative Markovian ELFs, with expressions (5.416) for MBE1 
and (5.417) for MBE2 cases, respectively, through the HF ( ), SCF1 (----), and SCF2 
(....) theoretical levels of orbital structure of Ne; after (Putz, 2005).

FIGURE 5.7 (c) The comparative Markovian ELFs, with expressions (5.419) for MEXP1 
(5.420) for MEXP2, cases, respectively, through the HF ( ), SCF1 (----), and SCF2 (....) 
theoretical levels of orbital structure of Ne; after (Putz, 2005).

FIGURE 5.7 (d) The comparative Markovian ELFs, with expressions (5.422) for 
MSECH1 and (5.423) for MSECH2 cases, respectively, through the HF ( ), SCF1 (----), 
and SCF2 (....) theoretical levels of orbital structure of Ne, after (Putz, 2005).
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Moreover, through the present ELFs a smoothly better behavior is 
shown by the so called M1 Markovian cases, (5.416) and (5.417) for-
mulations, providing a closer value to zero for the error in electron 
localizations.

Thus, among various classes of Markovian ELFs the most representa-
tive and efficient one was advanced as having the form (5.419). In this 

FIGURE 5.8 (Up and down) The comparative rescaled Ne radial density structure (——) 
given by Eq. (5.436) with the electron localization functions (ELFs) of Becke-Edgecombe 
BE (- - -), given in Eq. (5.388), and with the Markovian exponential one MEXP1 (——), 
given by (5.419), through different levels of self consistent field (SCF) methods: Hartree-
Fock (HF) set (5.428)–(5.430), simplified SCF1 as the first orbital approximation 
set (5.431), (5.432), independently of angular number, and the simplified SCF2 as the 
second orbital approximation set (5.433)–(5.435), dependently on the angular number, 
respectively; after Putz (2005).
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frame, the ELF information prescribe that as it has values closer to zero as 
the better electronic localization is providing, according with above den-
sity gradient limits.

Going to illustrate a further particular application of this scheme the 
atomic level is firstly presented for the special case of Li atom. The main 
stages consist in:

• Choosing the basis of the atomic functions:

 f r r rLi
1 8 863248 2 698( ) = −( ). exp .  (5.437a)

 f r r rLi
2

5 20 369721 0 797( ) = −( ). exp ./  (5.437b)

such that to fulfill the natural (radial) normalization conditions
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∫
2
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• Generating the ortho-normalized orbital eigen-waves, here accord-
ing with the Gram-Schmidt algorithm among shells and sub-shells:
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ensuring the additionally constraints:
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Generating the working overall electronic density
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that satisfies the spatial (radial) global N-integral condition:

 ρLi r dr( ) =
∞

∫
0

3  (5.442)

The Li-electronic density is then used for computation of the Markovian 
ELF, while their comparison is in Figure 5.9 illustrated.

From the Figure 5.9, there appears that the smooth delocalization of 
electrons of Li represented by density structure is removed by the ELF by 
clearly indicating where are the regions where the electronic realm is with 
less uncertainty detected. This way the ELF indicates merely where the 
electronic transitions behave like a step-function. In this respect, ELF can 
be regarded as the complement of electronic density being a better indicator 
of the regions where the bonding may arise. For instance, in the case of Li 
atomic structure, the fact that the ELF does not displays localization over 
the second shell (due to its values approaching unity in this range) indi-
cates a natural tendency for releasing the outermost electron to the (virtual) 
neighborhood atoms with uncompleted last shell(s) while preserving its 
delocalization feature across the bond. As such the lithium hydride (LiH) 

FIGURE 5.9 Comparison of the Li-radial density given with the electron localization 
function for the simplified self-consistent approximation for Li atomic structure; after 
Putz et al. (2006).
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bond is expected to be formed with a certain degree of ionicity in resonance 
with its covalence: LiH Li H-↔ + .

The reliability of ELF to quantify the local tendency of atoms to form 
bonds and aggregates can be further exemplified to diatomic molecules, 
while the particular cases of HF, HCl, HBr and HI structures are considered 
in Figure 5.10. In the bonding region, i.e., in the space between the hydro-
gen and halogen atomic centers in H-X molecules there are represented 

FIGURE 5.10 Comparative analysis of the charge density contours, electronic 
localization functions (ELFs), and radial densities for the H (dashed lines), F, Cl, Br, and I 
(full lines) atoms in molecular combinations HF, HCl, HBr, and HI, respectively; after Putz 
& Chiriac (2008).
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both the electron densities, computed upon above recipe, and the associate 
Markovian ELFs for the concerned atoms-in-molecules (AIM).

Figure 5.10 clearly shows that while the crossing of hydrogen and 
halogen radial densities does not provide the right bonding region in HCl, 
HBr, and HI cases, the corresponding ELFs cross-lines of AIM finely indi-
cate the frontier of atomic basins in hydracids thus confirming the ELF 
reliability in identifying chemical bonds and bonding.

One can equally say that in the crossing vicinity of AIM-ELFs the 
electrons are at the same time completely localized (for bonding with 
ELF ELFX X− → 0) and completely delocalized for atomic systems 
(with ELFX H, →1), according to above the ELF definition and present 
signification.

In other words it can be alleged that ELF application on chemical bond 
helps in identifying the molecular region in which the electrons undergo 
the transition from the complete delocalization in atoms to complete local-
ization in molecular bonding behavior.

Actually, it also proves that localization issue of ionic and covalent 
classification of bonds may be solved by a “continuous” quantum reality. 
Such a feature gives, nevertheless, an in-depth understanding of the quan-
tum nature of the chemical bond by associating the mysterious pairing 
of electrons issue to an analytical function able to distinguish the narrow 
regions of molecular space where the Heisenberg and Pauli principles are 
jointly satisfied through the ELF’s extreme values. Even more such sharp 
differentiation between 0 and 1 in atomic and molecular ELF values offers 
the future possibility in quantifying the chemical bond and bonding in the 
frame of quantum information theory.

This work has provided both a new interpretation and definition for the 
ELFas an important quantum chemical index for structure and bonding. 
The actual view interprets an ELF as the error in localization, on ground 
of the Heisenberg and Pauli quantum principles, when the inverse of dif-
ference in local kinetic terms is involved in its definition. A set of practical 
constraints to be fulfilled by a viable ELF definition is also given. More, 
employing the path integral Markovian pair conditional probability den-
sity with the basic concepts of the catastrophe theory new Markovian ELF 
classes are introduced, which generalize the previous Becke-Edgecombe 
definition. Through a concrete application on basic atomic and molecular 
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systems there was further established that the Markovian ELF given as 
Eq. (5.419) with components (5.395) and (5.396) behaves almost like a 
quantum step-function indicator of the electronic traps. Therefore, we 
propose it for the further analysis of modeling the forms of molecules. 
Nevertheless, extensions of this work can be also done in its methodologi-
cal part, if, for instance, the gradient kinetic term of Eq. (5.395) is replaced 
by a more complex one via Padé approximation. Finally, all these efforts 
have to serve for our understanding of atomic and molecular structure and 
their reactivity to a large degree.

5.6 CONCLUSION

Going to use the atomic information for further characterizing of chemical 
bonding, one may consider the algebraic characterization of the chemi-
cal potential either for non-reactive and reactive quantum states as the 
main driving source for ionic-to-covalent bonding in both ground and 
excited/valence atoms-in-molecules’ states, respectively. Accordingly, 
the decisive role the kinetic and gradient energetic contributions played 
in bonding atoms-in-molecules is abstractly (thus universally) proven by 
the dual-quantum co-existence of the reactive (dynamical) equilibrium as 
Kubo-Martin-Schwinger (KMS) quantum states, aka ionic-to-covalent 
realizations, respectively.

Then, naturally, the TF theory was formally presented, continuing the 
abstract-mathematical analysis discourse, modeling the atomic and atoms-
in-molecules stability, as the major quantum/mathematical source of the 
Life’ stability at large. Being initially proposed for homogenous electronic 
distribution, further exchange and gradient terms corrections were added 
by Dirac and von Weizsaecker, respectively, this way representing the 
benchmark of the DFT chemical formulation of homogeneous electronic 
systems locally perturbed by gradient corrections (near the attraction cen-
ters) and at distance by exchange and correlation contributions (in boning 
and atomic inter/intra-shells distributions). Such possibility is sustained, 
for instance, by the Teller non-bonding theorem (thus related with the uni-
form electronic distribution as a sort of quantum vacuum from where the 
chemical reality springs as quantum dots/perturbations near and between 
the nuclei of a given system), by which the mathematical analysis prevails 
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over the numerical one, by preceding it. Moreover, the convexity condi-
tion in the energy functional is also grounded by the parabolic shape of the 
energy-number of electronic dependency E(N) assumed in the conceptual 
DFT for modeling the chemical reactivity, see also the Volume III of the 
present five-volume set (Putz, 2016b). Nevertheless, TF theory should be 
considered there where the compromise between the local approximation 
for a homogeneous electronic distribution and the lack of a global energetic 
minimization for a density gradient included contribution does not impede 
a macroscopic/observable or a computational analysis whatever.

The conceptual and analytical line of non-equilibrium approaching 
equilibrium in electronic collective (by density) moving in atoms and 
in atoms-in-molecules is then continued by modeling the open systems 
through the already introduced path integrals, here within the Fokker-
Planck picture like the main frame in which the effective densities 
and probability densities are computed (after the first level of quan-
tum mechanics – see Volume I (Putz, 2016a), and of second level of 
quantum statistics – see Chapters 3 and 4 of this volume, in the pres-
ent five-volume set). The principal advantage of this approach consists 
in the direct calculations that claim to solve only one effective path 
integral, instead of one equation of motion, the molecular Schrödinger 
and the Fokker-Planck equations, for instance. Another advantage states 
in the real time continuation that can be directly applied, after all the 
calculations and implementations were done. However, in such a way, 
the corresponding mesoscopic algorithms for the equilibrium and non-
equilibrium were considered. They can lead with the specific density 
and probability density functionals implementations which carry out the 
chemical complex activities, either in the femto-second laser controlled 
reactions or in the stochastic ones (Putz, 2013). For the nonequilib-
rium mesoscopic algorithm, the perturbation solution of the probabil-
ity density for the effective electron that stochastically moves in the 
general enharmonic potential was developed (since by the fourth order 
of coordinate oscillation in enharmonic potential the analysis may be 
further connected with the symmetry breaking of the quantum fields in 
generating –out of the uniformly oscillating electrons in homogeneous 
system – the chemical boning with a certain degree of density local-
ization). Nevertheless, the main ingredients for the further mesoscopic 
goals are here grounded. Accordingly, the present study brings new 
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insight connecting mesoscopic algorithms for the equilibrium and non-
equilibrium dynamics with electronic localization by avoiding the fash-
ioned quantum orbitals, while using the quantum amplitudes instead. 
The study opens new perspectives for the considerations of the basic 
physical-chemical processes based on the fields, currents and associated 
forces. All this efforts are designated to contribute to the construction 
of a self-consistent picture lying between the mesoscopic causal char-
acterizations, and the macroscopic recorded phenomena; see also the 
Chapter 4 of the Volume I of the present five-volume set (Putz, 2016a).

However, the electronic localization complements, at the local level, 
the quantum information comprised in the atomic and atoms-in-mole-
cules behavior described through the so called localization functions. 
These should express the balance between the local stability and the 
delocalization tendency of the involved electrons in the chemical bond 
in the view of the forthcoming transformations. This way, the localiza-
tion functions indicate the ratio of the non-uniformly localized elec-
tronic distribution to the uniform delocalization of the electronic gas, 
accordingly with the Heisenberg quantum principle of delocalization 
and that of the Pauli indiscernibility. Accordingly, a new interpreta-
tion and definition for the ELF was presented as an important quantum 
chemical index for structure and bonding. The actual view interprets 
an ELF as the error in localization, on ground of the Heisenberg and 
Pauli combined quantum principles, through the involvement of the 
inverse of difference in local kinetic terms in its definition. A set of 
practical constraints to be fulfilled by a viable ELF definition is also 
given. Then, by employing the path integral Markovian pair conditional 
probability density with the basic concepts of the catastrophe theory 
new Markovian ELF classes are introduced, which generalize the previ-
ous Becke-Edgecombe definition. With the aid of general and specific 
applications on basic atomic and molecular systems there was further 
established that certain Markovian ELF behaves almost like a quantum 
step-function indicator of the electronic traps. Therefore, it was further 
proposed for modeling the formation and reactivity of molecules analy-
sis; this was however proved, through a series of hydracids molecules 
that the atoms-in-molecule ELF in its exponential form and with error 
interpretation, as recently recommended by one of the authors’ recipe 
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(Putz, 2005), stands as a viable quantum tool for identifying bonds 
within the bonding space.

Overall, while admitting that “a chemical reaction is a change in bond-
ing” (Parr & Yang, 1989), we arrive to chemical bonding characterization 
through chemical reactivity concepts (Putz & Chiriac, 2008). They are, 
however, classified as reactivity indices that span the local and global indi-
cators responsible for chemical affinity and bonding, and reactivity princi-
ples that consecrate the rules upon which the reactions can be rationalized 
when reactivity indices are employed. As such, the chemical reactivity 
indices, were introduced in the present volume for illustrating the atomic 
scales and elemental periodicities while they will be further employed for 
modeling molecular structure and chemical reactivity in the Volume III of 
the present five-volume book (Putz, 2016b). Finally, all these efforts have 
to serve for our understanding of atomic and molecular structure and of 
their reactivity to a large degree.
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One has the problem to appropriately solve the integral of the type

 I g x e dxf xα α( ) = =∫ ( ) ?( )  (A1)

so useful in solving the integrals specific to atomic scales determinations 
(see Sections 3.4.1 and 4.7.1)

Without going into details (Hassani, 1991), if one has to solve an inte-
gral of the (A1) type with α > 0, the saddle point approximation or the 
stationary phase method or the method of the steepest descendent requires 
its expansion around the point x0, the solution of the extreme equation:

 ∂
∂

=
=

f x
x x x

( )

0

0  (A2)

As the general recipe in solving (A1) one uses first the condition (A2) in 
the second order truncated Taylor expansion of the phase f(x) of (A1):

 f x f x x x f x( ) ( ) ( ) ''( )≅ + −0 0
2

0
1
2

 (A3)
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Then, because f(x)–f(x0) should be real and negative along the integration 
path in (A1) there is useful to adopt from (A3) the notation:

 f x f x t x x f x( ) ( ) ( ) ''( )− ≡ − = −0
2

0
2

0
1
2

 (A4)

with the help of which the integral (A1) rewrites accordingly, under the 
successive transformations:
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(A5)

Next, since further asymptotic form of the integral (A5) is assumed, the 
Mac Lauren series in t can be considerate as:

 g x t dx t
dt

a tk
k

k
( ) ( )( ) =

=

∞

∑
0

 (A6)

providing the expansion form of the integral (A5) too:

 I f x a t t dtk
k

k
( ) exp ( ) expα α α= [ ] −( )∫∑

=

∞

0
2

0
 (A7)

When only the leading term of Eq. (A7) is retained, one yields:

 I f x a t dt( ) exp ( ) expα α α≅ [ ] −( )∫0 0
2  (A8)

From now, in the form (A8) there is straight to recognize the celebrated 
Poisson type integral, see Volume I/Appendices of the present five-volume 
set (Putz, 2016):

 exp −( ) =∫ α
π
α

t dt2  (A9)
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whereas, for the a0, by employing the (A6) definition and the right side 
identity of (A4) the following successive relations occur:

a g x t dx t
dt0 = ( )( ) ( )

 

= + +







≅ ( ) −→

g x t dx t
dt

dx t
dt

g x
f x

t

0

0

0
0

2

( ) ... ( )

''( )
 (A10)

Finally, with Eqs. (A9) and (A10) back in Eq. (A8) the approximate value 
of integral (A1) is obtained as:

 I g x f x
f x

( ) ( )exp ( )
''( )

α α
π

α
≅ [ ] −0 0

0

2  (A11)
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